2014, Number 09-10
<< Back Next >>
Medicina & Laboratorio 2014; 20 (09-10)
DNA paternity test
Moreno-Valencia SP, Pineda-Monsalve CR
Language: Spanish
References: 57
Page: 411-432
PDF size: 513.13 Kb.
ABSTRACT
Scientific study of biological paternity is a special case of genetic relationship determination
between individuals, based on simple mendelian inheritance principles of genetic markers, which
establish that the alleles are segregate independently and discreetly during meiosis. The most common
analysis of forensic biological relationships evaluation is the paternity test, which the genetic profiles
of two individuals (or three if the mother is available) are uses to compare the relative probability of
that one of them being the father against the probability of not is ancestrally related to the other analyzed
individual. The short tandem repeats (STR) are the commonly used unlinked genetic markers for
relationship evaluation due to their high polymorphism. Besides, the results usually favor the determination
of the relationship when a robust statistical analysis is applied. The short tandem repeats
analysis is typically by the polymerase chain reaction (PCR), using multiple short tandem repeats loci
on commercial platforms, which are efficient and with high discriminating power. This review describes
the current state of DNA paternity test, the methodology, the results report, and the interpretation, to
facilitate their understanding to related professionals with these types of analysis.
REFERENCES
República de Colombia. Ley 1098 de 2006 (noviembre 8) «Por la cual se expide el Código de la Infancia y la Adolescencia». Disponible: http://www.secretariasenado.gov.co/ senado/basedoc/ley_1098_2006.html. Consultado: agosto 2014.
Escudero Alzate MC. Procedimiento de Familia y del Menor (ed 13). Bogotá D.C., Colombia: Editorial Leyer; 2005.
República de Colombia, Departamento para la Prosperidad Social, Instituto Colombiano de Bienestar Familiar, Dirección de Protección, Subdirección de restablecimiento de derechos. Documento guía pruebas de ADN para investigación de paternidad y/o maternidad. 2014. Disponible: http://www.icbf. gov.co/portal/page/portal/PortalICBF/ Bienestar/Programas/Proteccion/PruebasADN/ GUIA%20PATERNIDAD-2014%20 %20-%20Febrero%202014.pdf. Consultado: agosto 2014.
República de Colombia. Ley 75 de 1968 (Diciembre 30) «Por la cual se dictan normas sobre filiación y se crea el Instituto Colombiano de Bienestar Familiar». Disponible: http:// www.alcaldiabogota.gov.co/sisjur/normas/ Norma1.jsp?i=4828. Consultado: agosto 2014.
República de Colombia. Ley 721 de 2001 (Diciembre 24) «Por medio de la cual se modifica la Ley 75 de 1968». Disponible: http://www. alcaldiabogota.gov.co/sisjur/normas/Norma1. jsp?i=9565. Consultado: agosto 2014.
Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, et al. Molecular Cell Biology (ed 7). Nueva York, Estados Unidos: W. H. Freeman and Company; 2012.
Watson JD. Molecular Biology of the Gene (ed 5ta). California, Estados Unidos: Cold Spring Harbor Laboratory Press; 2003.
Li R. Forensic Biology: Identification and DNA Analysis of Biological Evidence. Florida, Estados Unidos: CRC Press,Taylor & Francis Group; 2011.
Girard JE. Criminalistics: Forensic Science, Crime and Terrorism (ed 2a). Massachusetts, Estados Unidos: Jones & Bartlett Learning; 2011.
Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 1998; 62: 1408-1415.
Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl Bakteriol 1900; 27: 357-362.
Mourant AE, Kopec AC, Domaniewska- Sobczak K. The distribution of the human blood groups and other polymorphisms (ed 2a). Londres, Inglaterra: Oxford University Press; 1976.
Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature 1985; 314: 67-73.
Jeffreys AJ, Wilson V, Thein SL. Individualspecific ‘fingerprints’ of human DNA. Nature 1985; 316: 76-79.
Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 1991; 49: 746-756.
Goldstein DB, Schlotterer C. Microsatellites evolution and aplications. Nueva York, Estados Unidos: Oxford University Press Inc.; 1999.
Triggs CM, Buckleton JS, Walsh SJ. Forensic DNA Evidence Interpretation. Florida, Estados Unidos: CRC Press; 2005.
Jobling MA, Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet 2004; 5: 739-751.
Bravo Aguilar MLJ. Introducción a la genética forense de las pruebas de paternidad. Medellín, Colombia: Editorial Universidad de Antioquia; 1999.
Kayser M, de Knijff P. Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 2011; 12: 179-192.
Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M. Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl 1993; 3: 13-22.
Sullivan KM, Mannucci A, Kimpton CP, Gill P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 1993; 15: 636-638, 640-631.
NIST, National Institute of Standards and Technology, STRBase (Short Tandem Repeat DNA Internet DataBase). Commercially Available STR Multiplex Kits. 2014. Disponible: http://www.cstl.nist.gov/biotech/strbase/ multiplx.htm. Consultado: agosto 2014.
Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Smerick JB, Budowle B. Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J Forensic Sci 2001; 46: 647-660.
Consejo de la Unión Europea. Council Resolution of 30 November 2009 on the exchange of DNA analysis results. 2009. Disponible: http://eur-lex.europa.eu/ legal-content/EN/TXT/?uri=CELEX:3200 9G1205%2801%29. Consultado: agosto 2014.
Cotton EA, Allsop RF, Guest JL, Frazier RR, Koumi P, Callow IP, et al. Validation of the AMPFlSTR SGM plus system for use in forensic casework. Forensic Sci Int 2000; 112: 151- 161.
Interpol. Interpol handbook on DNA data exchange and practice (ed 2a). Lyon, Francia: ICPO-INTERPOL, General Secretariat; 2009.
NIST, National Institute of Standards and Technology, STRBase (Short Tandem Repeat DNA Internet DataBase). Core STR Loci Used in Human Identity Testing. 2014. Disponible: http://www.cstl.nist.gov/biotech/ strbase/coreSTRs.htm. Consultado: agosto 2014.
Yunis EJ. El ADN en la identificación humana. Bogotá D.C., Colombia: Editorial Temis; 2002.
Peñuela Arroyo LS. El papel del bioanalista forense frente al sistema acusatorio. Medellín, Colombia: Señal Editora; 2005.
Bravo Aguilar MLJ. La verdad genética de la paternidad. Medellín, Colombia: Editorial Universidad de Antioquia; 2009.
Jobling MA, Pandya A, Tyler-Smith C. The Y chromosome in forensic analysis and paternity testing. Int J Legal Med 1997; 110: 118- 124.
Kayser M, Roewer L, Hedman M, Henke L, Henke J, Brauer S, et al. Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am J Hum Genet 2000; 66: 1580-1588.
Roewer L, Arnemann J, Spurr NK, Grzeschik KH, Epplen JT. Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 1992; 89: 389-394.
Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA, et al. DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Forensic Sci Int 2001; 124: 5-10.
NIST, National Institute of Standards and Technology, STRBase (Short Tandem Repeat DNA Internet DataBase). Y-Chromosome STRs. 2014. Disponible: http://www.cstl. nist.gov/strbase/y_strs.htm. Consultado: agosto 2014.
Chakraborty R. Paternity testing with genetic markers: are Y-linked genes more efficient than autosomal ones? Am J Med Genet 1985; 21: 297-305.
Ballantyne KN, Ralf A, Aboukhalid R, Achakzai NM, Anjos MJ, Ayub Q, et al. Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Hum Mutat 2014; 35: 1021-1032.
Thompson JM, Ewing MM, Frank WE, Pogemiller JJ, Nolde CA, Koehler DJ, et al. Developmental validation of the PowerPlex(R) Y23 System: a single multiplex Y-STR analysis system for casework and database samples. Forensic Sci Int Genet 2013; 7: 240-250.
Davis C, Ge J, Sprecher C, Chidambaram A, Thompson J, Ewing M, et al. Prototype PowerPlex(R) Y23 System: A concordance study. Forensic Sci Int Genet 2013; 7: 204-208.
Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, et al. A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 2012; 6: 208-218.
Carracedo A, Bar W, Lincoln P, Mayr W, Morling N, Olaisen B, et al. DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 2000; 110: 79-85.
Budowle B, Allard MW, Wilson MR, Chakraborty R. Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 2003; 4: 119-141.
Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, et al. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 2014; 13: 134-142.
Scientific Working Group on DNA Analysis Methods (SWGDAM). Guidelines for Mitochondrial DNA (mtDNA) Nucleotide Sequence Interpretation. Forensic Sci Commun 2003; 5.
Pereira R, Phillips C, Alves C, Amorim A, Carracedo A, Gusmao L. A new multiplex for human identification using insertion/deletion polymorphisms. Electrophoresis 2009; 30: 3682-3690.
Pereira R, Pereira V, Gomes I, Tomas C, Morling N, Amorim A, et al. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Int J Legal Med 2012; 126: 97-105.
Diegoli TM, Linacre A, Schanfield MS, Coble MD. Mutation rates of 15 X chromosomal short tandem repeat markers. Int J Legal Med 2014; 128: 579-587.
Giraldo A, Bermúdez A, Jiménez M, Lizarazu R. Estándares básicos para los laboratorios de pruebas de paternidad en Colombia, 2005. Rev Salud Pública 2006; 8: 229-237.
Burgoyne L, Kijas J, Hallsworth P, Turner J. Safe collection, storage and analysis of DNA from blood. Proceedings of the 5th Int Symposium on Human Identification. Wisconsin, Estados Unidos: Promega Corporation; 1994: 163.
Butler JM. Advanced Topics in Forensic DNA Typing: Methodology. Massachusetts, Estados Unidos: Academic Press; 2011.
GE Healthcare UK Limited. FTA™ Cards. Collect, archive, transport, and purify nucleic acids all at room temperature. 2010. Disponible: https://promo.gelifesciences. com/gl/RAPID-DNA/misc/Whatman- FTA-cards-data-file.pdf. Consultado: agosto 2014.
Applied Biosystems. AmpFlSTR® Identifiler ® PCR Amplification Kit User Guide. Life Technologies Corporation. 2012. Disponible: https://www3.appliedbiosystems. com/cms/groups/applied_markets_ support/documents/generaldocuments/ cms_041201.pdf. Consultado: agosto 2014.
Butler JM. Advanced Topics in Forensic DNA Typing: Interpretation. California, Estados Unidos: Academic Press; 2014.
Butler JM. Short tandem repeat typing technologies used in human identity testing. Biotechniques 2007; 43: ii-v.
Paredes M, Galindo A, Bernal M, Avila S, Andrade D, Vergara C, et al. Analysis of the CODIS autosomal STR loci in four main Colombian regions. Forensic Sci Int 2003; 137: 67-73.
Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Norma Técnica Colombiana NTC-ISO/IEC 17025: «Requisitos generales para la competencia de los laboratorios de ensayo y calibración». 2005. Disponible: http://www.itp.gob.pe/ normatividad/demos/doc/Normas%20 Internacionales/Union%20Europea/ISO/ ISO17025LaboratorioEnsayo.pdf. Consultado: agosto 2014.