2020, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2020; 39 (1)
Biological and toxicological activity of bile acids today
Piñol JFN, Ruiz TJF, Segura FN, Proaño TPS, Sánchez FEM
Language: Spanish
References: 36
Page: 1-14
PDF size: 598.28 Kb.
ABSTRACT
Introduction: bile acids not only have as a regular biological activity the absorption of fat-soluble vitamins, cholesterol and lipids, but also act as signaling molecules, modulators of intestinal cell proliferation, gene expression and energy metabolism according to in vitro studies and in vivo; under physiological conditions they maintain their homeostasis, which when interrupted promotes their toxicological action.
Objective: to describe the news of the new knowledge about the biological and toxicological activity of bile acids in the digestive system, aimed at general surgeons, gastroenterologists, clinicians and physiologists that allow them to contextualize the inflammation-carcinogenesis process related to the toxicological effects of bile acids.
Method: A systematic review of the biological and toxicological activity of bile acids was performed for general surgeons, gastroenterologists, clinicians and physiologists, as a useful tool in the pathophysiological compression of bile acid metabolism.
Conclusion: bile acids play a key role as signaling molecules in the modulation of epithelial cell proliferation, gene expression and energy metabolism, which when their homeostasis is interrupted, their toxic action is promoted, which translates in the inflammation-digestive carcinogenesis process.
REFERENCES
Heaton KW. The importance of keeping bile salts in their place. Gut [Internet]. 1969[Consulted 2018 dec 13];10(10):857-63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1552987/.
Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res [Internet]. 2009 [Consulted 2018 dec 13]; 50(12):2340-57. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781307/.
Li T, Chiang JYL. Nuclear receptors in bile acid metabolism. Drug Metab Rev [Internet]. 2013 [Consulted 2018 dec 13]; 45(1):145-55. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676171/.
Jenkins G, Hardie JL. Bile Acids Toxicology and Bioactivity. Cambridge, UK: The Royal Society of Chemistry; 2008. p. 170. Available from: https://doi.org/10.1039/9781847558336
Di Ciaula A, Garruti G, LunardiBaccetto R, Molina-Molina E, Bonfrate L, Wang DQH, et al. Bile Acid Physiology. Ann Hepatol [Internet].2017[Consulted 2018 dec 13];16:S4-S14.Availablefrom: http://www.sciencedirect.com/science/article/pii/S1665268119310385.
De Aguiar Vallim Thomas Q, Tarling Elizabeth J, Edwards Peter A. Pleiotropic Roles of Bile Acids in Metabolism. Cell Metab [Internet].2013[Consulted 2018 dec 13]; 17(5):657-69. Available from: http://www.sciencedirect.com/science/article/pii/S1550413113001174.
Boyer JL. Bile Formation and Secretion. ComprPhysiol [Internet].2013 Jul [Consulted 2019 jun 10];3(3):1035‐78. Available from: https://doi.org/10.1002/cphy.c120027.
Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol [Internet].2013[Consulted 2018 dec 13];19(42):7341-60. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831216/.
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res [Internet]. 2014[Consulted 2018 dec 13];55(8):1553-95. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109754/
Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids [Internet]. 2014 [Consulted 2018 dec 13]; 86:62-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073476/.
Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol [Internet].2012[Consulted 2018 dec 13];18(9):923-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297051/.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. CurrOpinGastroenterol [Internet].2014[Consulted 2018 dec 13]; 30(3):332-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215539/.
Howles PN. Cholesterol Absorption and Metabolism. 2016[Consulted 2018 dec 13]. In: Mouse Models for Drug Discovery: Methods and Protocols [Internet]. New York, NY: Springer New York; p. 177-97. Available from: https://doi.org/10.1007/978-1-4939-3661-8_11.
Molinaro A, Wahlström A, Marschall H-U. Role of Bile Acids in Metabolic Control. Trends EndocrinolMetab [Internet].2018[Consulted 2018 dec 13];29(1):31-41. Available from: http://www.sciencedirect.com/science/article/pii/S1043276017301510.
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B [Internet].2015[Consulted 2018 dec 13];5(2):99-105. Available from: http://www.sciencedirect.com/science/article/pii/S221138351500009X.
Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol [Internet].2013 [Consulted 2018 dec 13];58(1):155-68. Available from: http://www.sciencedirect.com/science/article/pii/S0168827812006228.
Paniagua M, Pinol F, Cendan A. Effect of microcrystalline cellulose on alkaline gastritis due to bile reflux. ActaGastroenterolLatinoam [Internet].1997[Consulted 2018 dec 13]; 27(2):75-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9412131.
Piñol Jiménez F, Paniagua Estévez M, Pérez Sánchez G, GraOramas B, CendánCordoví A, Borbolla Busquets E. Metaplasia intestinal en pacientes con reflujo duodenogástrico y ácidos biliares totales elevados. Rev Cubana Med [Internet]. 2010 [Consulted 2018 dec 13]; 49:17-32. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232010000100003&nrm=iso.
Paniagua Estévez ME, Piñol Jiménez FN. Nueva terapéutica en la gastritis alcalina. Santa fe de Bogota, Colombia: Ediciones MTI; 1997.
Mosińska P, Szczepaniak A, Fichna J. Bile acids and FXR in functional gastrointestinal disorders. Digest Liver Dis [Internet].2018 [Consulted 2018 dec 13];50(8):795-803. Available from: http://www.sciencedirect.com/science/article/pii/S1590865818307606.
Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev GastroenterolHepatol[Internet].2013 [Consulted 2018 dec 13];11:55. Available from: https://doi.org/10.1038/nrgastro.2013.151.
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, et al. Nuclear Receptors and Their Selective Pharmacologic Modulators. Pharmacol Rev [Internet].2013[Consulted 2018 dec 13];65(2):710. Available from: http://pharmrev.aspetjournals.org/content/65/2/710.abstract.
Hofmann AF, Hagey LR. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell Mol Life Sci [Internet].2008[Consulted 2018 dec 13];65(16):2461-83. Available from: https://doi.org/10.1007/s00018-008-7568-6.
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes [Internet].2016[Consulted 2018 dec 13];7(3):201-15. Available from: https://doi.org/10.1080/19490976.2016.1150414.
Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature [Internet].2012[Consulted 2018 dec 13]; 487(7405):104-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393783/.
Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol [Internet].2019[Consulted 2018 dec 13];12(4):851-61. Available from: https://doi.org/10.1038/s41385-019-0162-4.
Dermadi D, Valo S, Ollila S, Soliymani R, Sipari N, Pussila M, et al. Western Diet Deregulates Bile Acid Homeostasis, Cell Proliferation, and Tumorigenesis in Colon. Cancer Res [Internet]. 2017 [Consulted 2018 dec 13]; 77(12):3352. Available from: http://cancerres.aacrjournals.org/content/77/12/3352.abstract.
Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases [Internet]. 2018 [Consulted 2018 dec 13]; 6(13):577-88. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232560/.
SawkatM A. Intracellular signaling by bile acids [Internet].2012[Consulted 2018 dec 13];20:1-23. Available from: https://dx.doi.org/10.3329/jbs.v20i0.17647.
Zhu C, Fuchs CD, Halilbasic E, Trauner M. Bile acids in regulation of inflammation and immunity: friend or foe?ClinExpRheumatol. [Internet].2016[Consulted 2018 dic 11];34(4Suppl98):25-31. Available from: http://www.clinexprheumatol.org/pubmed/find-pii.asp?pii=27586800.
Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer lett [Internet].2013[Consulted 2018 dic 21];332(2):237-48. Available from: https://dx.doi.org/10.1016/j.canlet.2012.01.007.
Palmeira CM, Rolo AP. Mitochondrially-mediated toxicity of bile acids. Toxicology [Internet].2004[Consulted 2015 dic 21];203(1-3):1-15. Available from: https://dx.doi.org/10.1016/j.tox.2004.06.001.
Morgan MJ, y Liu ZG. Crosstalkof reactive oxygen species and NF-kapácidosbiliares signaling. Cell Res [Internet].2011[Consulted 2018 dic 21];21(1):103-15. Available from: https://dx.doi.org/10.1038/cr.2010.178.
Lozano G. The Enigma of p53. Cold Spring HarbSymp Quant Biol [Internet].2016[Consulted 2018 dec 13];81:37-40. Available from: http://symposium.cshlp.org/content/81/37.full.pdf+html.
López M, Anzola M, Cuevas-Salazar N, Aguirre JM, Martínez de Pancorbo M. p53, a tumor suppressor gene. Gaceta Med Bilbao [Internet].2001[Consulted 2015 dic 21];98(1):21-7. Available from: http://www.sciencedirect.com/science/article/pii/S0304485801743508.
Mendoza-Rodríguez CA, Cerbón MA. Tumor suppressor gene p53: mechanisms of action in cell proliferation and death. Rev Invest Clin [Internet].2000[Consulted 2015 dic 21];53(3):266-73. Available from: http://europepmc.org/ácidosbiliarystract/med/11496714.