2020, Number 4
<< Back Next >>
salud publica mex 2020; 62 (4)
Determination of insecticides’ lethal concentrations and metabolic enzyme levels in Triatoma dimidiata
Acero-Sandoval A, Penilla-Navarro RP, López-Ordóñez T, Rodríguez MH, Ordóñez-González JG, Solís-Santoyo F, Rodríguez AD
Language: English
References: 37
Page: 402-409
PDF size: 519.90 Kb.
ABSTRACT
Objective. The feasibility of the use of WHO impregnated
paper and biochemical assays to determine lethal concentrations
(LC
50and LC
99) and insecticide metabolic enzyme levels
of
Triatoma dimidiata. Materials and methods. LC
50 and
LC
99 were calculated with WHO papers impregnated at different
concentrations of malathion, propoxur and deltamethrin;
the percentage of insensitive acetylcholinesterase (iAChE);
and the levels of esterases, glutathione S-transferases, and
monooxygenases in laboratory nymphs of the first stage (5 to
7 days), were undertaken using the WHO biochemical assays.
Results. Respectively the LC
50 and LC
99 µg/cm
2 obtained for
malathion were 43.83 and 114.38, propoxur 4.71 and 19.29,
and deltamethrin 5.80 and 40.46. A 30% of the population
had an iAChE, and only a few individuals had high P
450 and
β-eterase levels. Conclusion. Impregnated papers and biochemical
tests developed by WHO for other insects, proved
to be feasible methods in monitoring insecticide resistance
and metabolic enzymes involved in
T. dimidiata.
REFERENCES
Cruz-Reyes A, Pickering-Lopez JM. Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years. Mem Inst Oswaldo Cruz. 2006;101(4):345-54. https://doi.org/10.1590/S0074- 02762006000400001
Dumonteil E, Ruiz-Piña H, Rodriguez-Félix E, Barrera-Pérez M, Ramírez- Sierra MJ, Rabinovich JE, et al. Re-infestation of houses by Triatoma dimidiata after intra-domicile insecticide application in the Yucatán Peninsula. Mem Inst Oswaldo Cruz. 2004;99(3):253-6. https://doi.org/10.1590/S0074- 02762004000300002
Secretaría de Salud. NOM-032-SSA2-2014. Norma Oficial Mexicana para la vigilancia epidemiológica, promoción, prevención y control de las enfermedades transmitidas por vectores. DOF, April 16, 2015 [cited 22 March 2019]. Available from: http://www.cenaprece.salud.gob.mx/programas/ interior/vectores/descargas/pdf/NOM_032_SSA2_2014.pdf
Rivero A, Vézilier AJ, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLOS Pathog. 2010;6(8):e1001000. https://doi.org/10.1371/journal.ppat.1001000
Pessoa GCD, Viñas PA, Rosa ACL, Diotaiuti L. History of insecticide resistance of Triatominae vectors. Rev Soc Bras Med Trop. 2015;48(4):380- 9. https://doi.org/10.1590/0037-8682-0081-2015
World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Global Malaria Programme. 2nd Ed. Geneva: WHO, 2013 [cited 22 March 2019]. Available from: http://apps. who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf;jsessi onid=BF31B2436F3030E1B8C1767718183BF1?sequence=1
Picollo MI, Fontan A, Wood E, Zerba E. The biochemical basis of tolerance to Malathion in Rhodnius prolixus. Comp Biochem Physiol C. 1990;96(2):361-5. https://doi.org/10.1016/0742-8413(90)90022-2
Sívori JL, Casabé N, Zerba EN, Wood EJ. Induction of glutathione S-transferase activity in Triatoma infestans. Mem Inst Oswaldo Cruz. 1997;92(6):797-802. https://doi.org/10.1590/S0074-02761997000600013
González-Audino P, Vassena C, Barrios S, Zerba E. Role of enhanced detoxication in a deltamethrin-resistant population of Triatoma infestans (Hemiptera, Reduviidae) from Argentina. Mem Inst Oswaldo Cruz. 2004;99(3):335-9. https://doi.org/10.1590/S0074-02762004000300018
Picollo MI, Vassena C, Orihuela PS, Barrios S, Zaidemberg M, Zerba E. High resistence to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemipetra: Reduviidade) from Northern Argentina. J Med Entomol. 2005;42(4):637-42. https://doi.org/10.1093/ jmedent/42.4.637
Santo-Orihuela PL, Vassena CV, Zerba EN, Picollo MI. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol. 2008;45(2):298-306. https://doi.org/10.1093/jmedent/45.2.298
Santo-Orihuela PL, Carvajal G, Picollo MI, Vassena CV. Toxicological and biochemical analysis of the susceptibility of sylvatic Triatoma infestans from the Andean Valley of Bolivia to organophosphate insecticide. Mem Inst Oswaldo Cruz. 2013;108(6):790-5. https://doi.org/10.1590/0074- 0276108062013017
Santo-Orihuela PL, Carvajal G, Picollo MI, Vassena CV. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage. Mem Inst Oswaldo Cruz. 2013;108(8):1031-6. https://doi.org/10.1590/0074-0276130184
World Health Organization. Protocolo de evaluación de efecto insecticida sobre Triatominos. Acta Toxicol Argent. 1994;2:29-32.
Eichler S, Schaub GA. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100(1):17-27. https://doi.org/10.1006/expr.2001.4653
World Health Organization. Techniques to detect insecticide resistance mechanisms. Field and laboratory manual. Geneva: WHO, 1998 [cited 22 March 2019]. Available from: http://www.who.int/whopes/resources/ who_cds_cpc_mal_98.6/en/
Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodriguez MH. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol. 1998;12(3):217-33. https://doi. org/10.1046/j.1365-2915.1998.00123.x
Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact. 2005;157-158:257-61. https://doi.org/10.1016/j.cbi.2005.10.040
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9 [cited 22 march 2019]. Available from: http://www. jbc.org/content/249/22/7130.long
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. https://doi.org/10.1016/0003- 2697(76)90527-3
Vassena CV, Picollo MI, Zerba EN. Insecticide resistance in Brazilian Triatoma infestans and Venezuelan Rhodnius prolixus. Med Vet Entomol. 2000;14(1):51-5. https://doi.org/10.1046/j.1365-2915.2000.00203.x
Vassena CV, PicolIo MI. Monitoreo de resistencia a insecticidas en poblaciones de campo de Triatoma infestans y Rhodnius prolixus, insectos vectores de la enfermedad de Chagas. Revista de Toxicología en Línea. 2003;3:21 [cited 10 March 2019]. Available from: https://www.sertox.com. ar/modules.php?name=Content&pa=showpage&pid=104
Reyes M, Angulo VM, Sandoval CM. Efecto tóxico de β-cipermetrina, deltametrina y fenitotrión en cepas de Triatoma dimidiata (Latreille, 1811) y Triatoma maculata (Erichson, 1848) (Hemiptera, Reduviidae). Biomédica. 2007;27(1 esp):75-82. https://doi.org/10.7705/biomedica.v27i1.250
Lardeux F, Depickére S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop Med Int Health. 2010;15(9):1037-48. https://doi.org/10.1111/ j.1365-3156.2010.02573.x
World Health Organization Pesticides Evaluation Scheme, Division of Control on Tropical Diseases. Report of the WHO informal consultation on the evaluation and testing of insecticides. Geneva: WHO, 1996 [cited 22 March 2019]. Available from: http://apps.who.int/iris/bitstream/ handle/10665/65962/CTD_WHOPES_IC_96.1.pdf?sequence=1
Sfara V, Zerba E, Alzogaray RA. Toxicity of pyrethroids and repellency of diathyltoluamide in two deltamethrin-resistant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2006;101(1):89-94. https://doi.org/10.1590/S0074-02762006000100017
Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13(1):1-7. https://doi.org/10.1111/j.1365-2583.2004.00452.x
Aponte HA, Penilla RP, Dzul-Manzanilla F, Che-Mendoza A, López AD, Solis F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pestic Biochem Physiol. 2013;107(2):226-34. https://doi.org/10.1016/j.pestbp.2013.07.005
Clark AG, Shamaan NA, Sinclair MD, Dauterman WC. Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic Biochem Physiol. 1986;25(2):169-75. https://doi.org/10.1016/0048-3575(86)90044-1
Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defense agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357(1):65-72. https://doi.org/10.1042/bj3570065
Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Solis F, Rodriguez MH. Changes in glutathione S-transferase activity in DDT resistant natural Mexican populations of Anopheles albimanus under different insecticide resistance management strategies. Pestic Biochem Physiol. 2006;86(2):63- 71. https://doi.org/10.1016/j.pestbp.2006.01.006
Karunaratne SH. Insecticide cross-resistance spectra and underlying resistance mechanisms of Sri Lankan anopheline vectors of malaria. Southeast Asian J Trop Med Public Health. 1999;30(3):460-9 [cited 22 March 2019]. Available from: https://www.researchgate.net/publication/ 12541389_Insecticide_cross-resistance_spectra_and_underlying_resistance_ mechanism_of_Sri_Lankan_Anopheline_vectors_of_malaria
Bouvier JC, Boivin T, Beslay D, Sauphanor B. Age-dependent response to insecticides and enzymatic variation in susceptible and resistant codling moth larvae. Arch Insect Biochem Physiol. 2002;51(2):55-66. https://doi. org/10.1002/arch.10052
Chouaibou MS, Chabi J, Bingham GV, Knox TB, N´Dri L, Kesse NB, et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC Infect Dis. 2012;12:214. https://doi.org/10.1186/1471-2334-12-214
Hooven LA, Sherman KA, Butcher S, Giebultowicz JM. Does the clock make the poison? Circadian variation in response to pesticides. Plos One. 2009;4(7):e6469. https://doi.org/10.1371/journal.pone.0006469
Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30-9. https:// doi.org/10.1016/j.jinsphys.2014.02.013
Panamerican Health Organization. II Reunión técnica latinoamericana de monitoreo de resistencia a insecticidas en triatominos vectores de Chagas. Panamá: PAHO; 11 al 13 de abril de 2005; 20 p.