2020, Number 4
<< Back Next >>
salud publica mex 2020; 62 (4)
Composition and abundance of anopheline species according to habitat diversity in Mexico
Villarreal-Treviño C, Ríos-Delgado JC, Penilla-Navarro RP, Rodríguez AD, López JH, Nettel-Cruz JA, Moo-Llanes DA, Fuentes-Maldonado G
Language: English
References: 46
Page: 388-401
PDF size: 566.82 Kb.
ABSTRACT
Objective. To determine the abundance and geographic
distribution of the main malaria vectors, which are influenced
by habitat characteristics and ecological factors that directly
impact adult density and the dynamics of malaria transmission
in Mexico.
Materials and methods. Samples of larvae
were collected from 19 states in Mexico. Each larval habitat
was characterized
in situ determining the following parameters:
water depth, turbidity, percentage of vegetation cover,
amount of detritus, presence of algae, light intensity, type of
vegetation, amount of predators, habitat stability, altitude,
and hydrologic type.
Results. A total of 21 687 larvae corresponding
to 13 anopheline species were obtained from 149
aquatic habitats. The most abundant species were
Anopheles
pseudopunctipennis (52.91%),
An. albimanus (39.14%) and
An.
franciscanus (5.29%). The multiple logistic regression analysis
showed a negative association between
An. pseudopunctipennis
and water turbidity (β=-1.342; Wald=6.122;
p=0.013) and the
amount of detritus (β=-2.206; Wald=3.642;
p=0.050). While
in
An. albimanus, there was a significant positive association
with water turbidity (β=1.344; Wald=4.256;
p=0.039), a
negative correlation was found with the altitude (β=-3.445;
Wald=5.407;
p =0.020). The highest mosquito species diversity
index was found in Chiapas (Fisher’s α=1.20) and the
lowest diversity in Chihuahua (Fisher’s α=0.26). The greatest
richness was found in streams (
n=11).
Conclusions.
The two most abundant species were:
An. albimanus and
An.
pseudopunctipennis. Detailed knowledge of the distribution
and characteristics of their larval habitats will be useful for
the effective implementation of control strategies in Mexico.
REFERENCES
World Health Organization. World Malaria Report 2016. Geneva: WHO, 2016 [cited April 1, 2017]. Available form: https://www.who.int/malaria/ publications/world-malaria-report-2016/report/en/
Secretaría de Salud. Reducción de los casos de paludismo en México. México: SS, 2016 [cited May 10, 2017]. Available from: https://www.gob. mx/salud/prensa/reduccion-del-93-por-ciento-los-casos-de-paludismo-enmexico
Betanzos-Reyes A. La malaria en México. Progresos y desafíos hacia su eliminación. Bol Med Hosp Infant Mex. 2011;68(2):159-68.
Harbach R. Genus Anopheles Meigen, 1818 [Internet]. Mosquito Taxonomic Inventory. 2008 [cited April 1, 2017]. Available from: http:// mosquito-taxonomic-inventory.info/simpletaxonomy/term/6047
Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, et al. Developing global maps of the dominant Anopheles vectors of Human Malaria. PLoS Med. 2010;7(2):e1000209. https://doi.org/10.1371/journal. pmed.1000209
Vargas L, Martínez-Palacios A. Anofelinos mexicanos, taxonomía y distribución. México City: Comisión Nacional para la Erradicación del Paludismo/Secretaría de Salubridad y Asistencia, 1956.
Wilkerson RC, Strickman D, Litwak TR. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. J Am Mosq Control Assoc. 1990;6:7-34.
Rodríguez MH, Loyola EG. Situación epidemiológica actual y perspectivas de la investigación entomológica en México. In: Sociedad Mexicana de Entomología. Memorias de IV Simposio Nacional de Entomología Médica y Veterinaria. Oaxtepec, Morelos, Mexico: SME, 1989:15-40.
Loyola EG, Arredondo-Jiménez JI, Rodríguez MH, Bown DN, Vaca- Marín MA. Anopheles vestitipenis, the probable vector of Plasmodium vivax in the Lacandon forest of Chiapas, Mexico. Trans R Soc Trop Med Hyg. 1991;85:171-4. https://doi.org/10.1016/0035-9203(91)90010-V
Fernández-Salas I, Rodríguez MH, Roberts DR, Rodríguez MC, Wirtz RA. Bionomics of adult Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothill area of southern Mexico. J Med Entomol. 1994;31:663-70. https://doi.org/10.1093/jmedent/31.5.663
Villarreal-Treviño C, Arredondo-Jiménez JI, Rodríguez MH. Bionomía de los principales vectores del paludismo en México. In: Kumate J, Martínez- Palomo A (eds.). A cien años del descubrimiento de Ross. El Paludismo en México. Mexico City: El Colegio Nacional, 1998;149-65.
Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30(12-13):1395-405. https://doi.org/10.1016/S0020-7519(00)00141-7
Vora N. Impact of anthropogenic environmental alterations on vectorborne diseases. Medscape J Med. 2008;10(10):238.
Fernández-Salas I, Roberts DR, Rodríguez MH, Marina-Fernández CF. Bionomics of larval populations of Anopheles pseudopunctipennis in the Tapachula foothills area, southern Mexico. J Am Mosq Control Assoc. 1994;4:477-86.
Savage HM, Rejmankova E, Arredondo-Jiménez JI, Roberts DR, Rodríguez MH. Limnological and botanical characterization of larval habitats for two primary malarial vectors, Anopheles albimanus and Anopheles pseudopunctipennis, in coastal areas of Chiapas State, Mexico. J Am Mosq Control Assoc. 1990;6:612-20.
Faran ME. Mosquito studies (Diptera, Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. Contrib Am Entomol Inst. 1980;15(7):1-215.
Rodríguez AD, Rodríguez MH, Meza RA, Hernández JE, Rejmankova E, Savage HM, et al. Dynamics of population densities and vegetation associations of Anopheles albimanus larvae in a coastal area of southern Chiapas, Mexico. J Am Mosq Control Assoc. 1993;9(1):46-58.
Villarreal-Treviño C, Penilla-Navarro RP, Vázquez-Martínez MG, Moo- Llanes DA, Ríos-Delgado JC, Fernández-Salas I, Rodríguez AD. Larval habitat characterization of Anopheles darlingi from its northernmost geographical distribution in Chiapas, México. Malar J. 2015;14:517. https:// doi.org/10.1186/s12936-015-1037-0
Chanon KE, Méndez-Galván JF, Galindo-Jaramillo JM, Olguín-Bernal H, Borja-Aburto VH. Cooperative actions to achieve malaria control without the use of DDT. Int J Hyg Environ Health. 2003;206:387-94. https://doi. org/10.1078/1438-4639-00235
Bond JG, Rojas JC, Arredondo-Jiménez JI, Quiroz-Martínez H, Valle J, Williams T. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation. Proc Biol Sci. 2004;271:2161-9. https://doi.org/10.1098/rspb.2004.2826
Morrone JJ, Márquez J. Biodiversity of Mexican terrestrial arthropods (Arachnida and Hexapoda): A biogeographic puzzle. Acta Zoológica Mexicana. 2008;24:15-41. https://doi.org/10.21829/azm.2008.241613
Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7:333. https:// doi.org/10.1186/1756-3305-7-333
Instituto Nacional de Estadística y Geografía. Climatología. Mapa digital. México: INEGI [cited January 5, 2017]. Available from: https://www.inegi. org.mx/temas/climatologia/
Weatherspark. El clima típico de cualquier lugar del mundo. Datos ambientales [cited May 16, 2017]. Available from: https://es.weatherspark.com/
Villarreal C, Arredondo-Jiménez JI, Rodríguez MH, Ulloa A. Colonization of Anopheles pseudopunctipennis from Mexico. J Am Mosq Control Assoc. 1998;14:369-72.
Becker N, Zgomba M, Petric D, Dahl C, Boase C, Lane J, et al. Mosquitoes and their control. New York: Springer Science & Business Media, 2013.
Magurran AE. Measuring ecological diversity. Oxford: Blackwell Publishing, 2004.
Seaby RM, Henderson PA. Species diversity and Richness IV. Lymington, Hampshire, England: Pisces Conservation, 2007.
Malaria Atlas Project. The Malaria Atlas Project website [cited July 1, 2017]. Available from: http://www.map.ox.ac.uk
Baak-Baak CM, Cigarroa-Toledo N, Arana-Guardia R, Chi-Chim WA, Chan Orilla JA, Machain-Williams C, et al. Mosquito fauna associated with Aedes aegypti (Diptera: Culicidae) in Yucatán State of southeastern México, and checklist with new records. Fla Entomol. 2016;99(4):703-9. https://doi. org/10.1653/024.099.0420
Manguin S, Roberts DR, Peyton EL, Rejmankova E, Pecor J. Characterization of Anopheles pseudopunctipennis larval habitats. J Am Mosq Control Assoc. 1996 12(4):619-26.
Fuller DO, Ahumada ML, Quiñones ML, Herrera S, Beier JC. Nearpresent and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int J Health Geogr. 2012;30:11:13. https://doi.org/10.1186/1476-072X-11-13
Smithson TW. Species rank for Anopheles franciscanus based on failure of hybridization with Anopheles pseudopunctipennis pseudopunctipennis. J Med Entomol. 1972;9(6):501-5. https://doi.org/10.1093/jmedent/9.6.501
Russell PE, Rozeboom LE, Stone A. Keys the anopheline mosquitoes of the world with notes on their identification, distribution, biology and relation to malaria. Philadelphia, PA: The American Entomological Society/ The Academy of Natural Science,1943.
Darsie RF Jr. A survey and bibliography of the mosquito fauna of Mexico (Diptera: Culicidae). J Am Mosq Control Assoc. 1996;2:298-306.
Ortega-Morales AI, Zavortink TJ, Huerta-Jiménez H, Sánchez-Rámos FJ, Valdés-Perezgasga MT, Reyes-Villanueva F, et al. Mosquito records from México: The Mosquitoes (Diptera: Culicidae) of Tamaulipas State. J Med Entomol. 2015;52(2):171-84. https://doi.org/10.1093/jme/tju008
Gadagkar R, Chendrashekara K, Nair P. Insect species diversity in the tropics: Sampling methods and a case study. J Bombay Nat.1990;87(3):337-53.
Instituto Nacional de Ecología. Programa de manejo Reserva de la biosfera Montes Azules, México. Mexico City: Instituto Nacional de Ecología/ Secretaría del Medio Ambiente, Recursos Naturales y Pesca (National Institute of Ecology/Ministry of the Environment, Natural Resources and Fisheries), 2000.
Kumm HW, Bustamante ME, Herrera JR. Report concerning certain anophelines found near the Mexican-Guatemalan frontier. Am J Trop Med. 1943;32:373-6. https://doi.org/10.4269/ajtmh.1943.s1-23.373
Vargas L. El Anopheles darlingi Root, 1926 en México. Revista del Instituto de Salubridad y Enfermedades Tropicales. 1946;7(4): 221-6.
Knight KL, Stone A. A catalog of the Mosquitoes of the World (Diptera: Culicidae). 2nd ed. College Park, Maryland: Entomological Society of America, 1977.
Fuller DO, Alimi T, Herrera S, Beier JC, Quiñones ML. Spatial association between malaria vector species richness and malaria in Colombia. Acta Trop. 2016;158:197-200. https://doi.org/10.1016/j.actatropica. 2016.03.008
Herrera-Varela M, Orjuela LI, Peñalver C, Conn JE, Quiñones ML. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia. Mem Inst Oswaldo Cruz. 2014;109(7):952-6. https://doi.org/10.1590/0074-0276140126
Secretaría de Salud. Programa de Acción Específico. Prevención y Control del Paludismo 2013-2018. Mexico City: Secretaría de Salud, 2014 [cited May 1, 2018]. Available from: http://www.cenaprece.salud.gob.mx/ descargas/pdf/PAE_PrevencionControlPaludismo2013_2018.pdf
Day JF. Host-seeking strategies of mosquito disease vectors. J Am Mosq Control Assoc. 2005;21(4 Suppl):17-22. https://doi. org/10.2987/8756-971X(2005)21[17:HSOMDV]2.0.CO;2
Beerntsen BT, James AA, Christensen BM. Genetics of mosquito vector competence. Microbiol Mol Biol Rev. 2000;64(1):115-37. https:// doi.org/10.1128/MMBR.64.1.115-137.2000