2020, Number 1
<< Back Next >>
Revista Cubana de Informática Médica 2020; 12 (1)
Analysis and selection of techniques for the fusion of PET/CT imaging based on software
Orellana GA, Rodríguez GR
Language: Spanish
References: 19
Page: 44-57
PDF size: 431.66 Kb.
ABSTRACT
Techniques such as Positron Emission Tomography and Computed Tomography allow to determine the malignant or benign nature of a tumor and to study the anatomical structures of the body with high resolution images, respectively. International researchers have used different techniques for the fusion of Positron Emission Tomography and Computed Tomography because it allows observing metabolic functions in correlation with anatomical structures. The present investigation proposes to carry out an analysis and selection of algorithms that favor the fusion of neuroimaging, based on their precision. In this way, contribute to the development of fusion software without the need to purchase expensive high-performance imaging equipment, which is expensive. For the study the documentary analysis, logical historical and deductive inductive methods were applied. The best algorithm variants and techniques for fusion were analyzed and identified according to the reported literature. From the analysis of these techniques, the Wavelet-based fusion scheme for image fusion is identified as the best variant. Bicubic interpolation is proposed for co-registration. As a discrete Wavelet transform, the use of Haar's is evidenced. In addition, the research led to the development of the fusion scheme based on the previous techniques. From the analysis carried out, the applications and usefulness of fusion techniques were verified as a substitute for the high costs of acquiring PET/CT multifunction scanners for Cuba.
REFERENCES
FERNÁNDEZ-FRIERA Leticia, GARCÍA-ÁLVAREZ A, IBÁÑEZ B. Imaginando el futuro del diagnóstico por imagen. Revista Española de Cardiología. 2013. 66(6):134-143. DOI 10.1016/j.recesp.2012.10.012.
JAMES A, DASARATHY B. Medical Image Fusion: A survey of the state of the art. Information Fusion. 2013. DOI10.1016/j.inffus.2013.12.002
Gooding Mark J, Rajpoot Kashif M, Salli Chamberlain P, Kennedy SH, NOBLE J A. Investigation into the Fusion of Multiple 4-D Fetal Echocardiography Images to Improve Image Quality. Ultrasound in Medicine & Biology. junio 2010. 36(6):957-966. DOI 10.1016/j.ultrasmedbio.2010.03.017.
Huang H K PACS and imaging informatics: basic principles and applications. 2nd ed. Hoboken, N.J: Wiley-Blackwell, 2010.
Ladrón de Guevara H. Pefaur DR PET/CT en cáncer pulmonar. Revista médica de Chile. 2010. 138(11):1441-1450. DOI 10.4067/S0034-98872010001200015.
Fenoll IG. 2010. Aportaciones a la segmentación y caracterización de imágenes médicas 3D. Capitulo II. Imágenes Médicas, Madrid: sn.
Martí-Climent JM, Velloso MG, Serra P, Boán JF, Richter JA. Tomografía por emisión de positrones con un equipo PET/TAC. Revista Española de Medicina Nuclear, 2005; 24(1):60-76.
Maldonado A, Suárez JP, Sancho Cuesta F. Aportación de la imagen PET-CT a la patología oncológica de cabeza y cuello. Acta Otorrinolaringol Esp 2005; 56(10):453-8
Jadvar H, Vélez E, Desai B, Ji L. SNMMI scientific delegation to Cuba. (2018) J Nucl Med, 59, p.15N.
Vaishali P, Kinjal M. A Review on Different Image Interpolation Techniques for Image Enhancement. International Journal of Scientific Engineering and Applied Science (IJSEAS). 2013. 3(12).
Shreyas F. Image Interpolation Techniques in Digital Image Processing: An Overview. Journal of Engineering Research and Applications. 2014. 4(10):70-73.
Ram Nivas SY, Himanshu A. Medical Image Fusion Using Wavelet Transform. International Journal of Scientific Engineering and Applied Science (IJSEAS). 2015. 1(3).
Shalchian B, Rajabi H, Soltanian-zadeh H. Fusion of PET and CT images using wavelet transform. Hellenic journal of nuclear medicine. 2009;12(3):238-43.
Jyoti A, Saraabjet Singh B. Implementation of hybrid image fusion technique for feature enhancement in medical diagnosis. Agarwal and BediHuman-centric Computing and Information Sciences. 2015. 2(3). DOI 10.1186/s13673-014-0020-z.
Fortonani DM, HERNÁN PADRÓN MS. Fusión de imágenes mediante Transformada Wavelet Diádica. 2006.
Joby J, Alka B. Medical Image Fusion Based on Wavelet Transform and Fast Curvelet Transform. IJEDR. 2014; 2(1):121-128.
Marín A. Implementación y Evaluación de Algoritmos de Fusión de Imágenes en el contexto de las Imágenes Médicas; 2013. Repositorio.upct. Universidad Politécnica de Cartagena. Disponible en: https://repositorio.upct.es/bitstream/handle/10317/3429/pfc5406.pdf%3Bjses
Vidakover B, Mueller P. Wavelets for kids. A tutorial introduction. Duke University. Disponible en: http://hjemmesider.diku.dk/~jda/biosignal/kidsA.pdf
Amara G. An Introduction to Wavelets. IEEE Computational Science and Engineering. 1995; 2(2): 38-39.