2019, Number 3
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2019; 35 (3)
CD45 and childhood acute lymphoblastic leukemia
Marsán SV, Macías AC, Díaz DG, Triana MY, Lam DRM, Machín GS, García CMB, Valdés SC, Cháguez LO
Language: Spanish
References: 29
Page: 1-16
PDF size: 342.64 Kb.
ABSTRACT
Introduction: CD45 is expressed in hematopoietic cells, its determination is essential for the
immunophenotypic classification of acute lymphoid leukemia (ALL).
Objective: To evaluate the expression of the CD45 antigen in the blasts of pediatric patients with
ALL and its relationship with the biological, morphological and clinical characteristics at the
onset of the disease, the response to treatment and the overall survival (OS) of the patients.
Methods: 160 patients with ALL were studied between December 2012 and December 2017,
treated with the ALL-IC BFM-SG 2009 protocol. Bone marrow cellular immunophenotyping was
performed by flow cytometry.
Results: Patients with the CD45 + B phenotype predominated in
those under six years of age, while those with a CD45 + T phenotype in those older than ten. A
significant difference was found between the absence of mediastinal lymph nodes, the leukemic
phenotype and the absence of CD45 (p = 0.004). A significant difference was found between the
response to prednisone in peripheral blood at day eight, the leukemic phenotype and the absence
of CD45, p = 0.001. Significant differences were found between the response to prednisone in
peripheral blood on day eight and the response in bone marrow on day 33, according to leukemic
phenotype and the presence in blasts of the CD45 antigen (p = 0.009 and p = 0.02, respectively).
A significant difference was found between the OS of patients, according to leukemic phenotype and the absence of the CD45 antigen, p = 0.017.
Conclusion: The expression or absence of the CD45 antigen in blasts is related to the response to treatment and OS of pediatric patients with ALL.
REFERENCES
Ortolani C. CD45 Antigen. In: Ortolani C, editor. Flow Cytometry of Hematological Malignancies. London: Wiley-Blackwell;2011. p. 70-4.
Saunders AE, Johnson P. Modulation of immune cell signaling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010;22(3):339-48.
Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, et al. CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol 2011;39(12):1161-70.
Saunder AE, Shim YA, Johnson P. Innate Immune Cell CD45 Regulates Lymphopenia-Induced T Cells Proliferation. J Immunol 2014;193(6):2831-42.
Gerardo CJ, Rodríguez C, Sastre D, Heller V, Fernández E. Utilización estratégica de CD45 en la identificación de células blásticas por citometría de flujo. Acta Bioquím Clín Latinoam 2006;40(2):173-80.
González A, Menéndez A, Machín S, Svarch E, Campo M, Fernández R, et al. Resultados del tratamiento de la leucemia linfoide aguda del niño en Cuba. Rev Cubana Hematol, Inmunol y Hemoter . 2013. [citado 2017 Jul 1];30(1):[aprox.0p.]. Disponible: http://www.revhematologia.sld.cu/index.php/hih/article/view/138
Béné MC, Le Bris Y, Robillard N, Wuilléme S, Fouassier M, Eveillard M. Flow cytometry in hematological nonmalignant disorders. Int Jnl Lab Hem 2016;38: 5-19.
Béné MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. Leukemia 1995;9(10):1783-6.
Kier KL. Biostatistical applications in epidemiology. Pharmacother. 2011;31(1):9-22.
Kaplan EL. Non parametric estimation for incomplete observations. J Am Stat Assoc 1958:53:457-81.
World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013;310(20):2191-4.
Machín S, González A, Querol N, Escalona Y, García M, Fernández R, et al. Caracterización y respuesta al tratamiento de las leucemias en niños cubanos (2006-2015). Rev Cubana Hematol, Inmunol y Hemoter, 2017[citado 2018 Dic 1];36 (Supl). Disponible en: www.revhematologia.sld.cu/index.php/hih/article/download/706/555
Juliusson G, Hough R. Leukemia. Prog Tumor Res. 2016;43:87-100. DOI: 10.1159/000447076
Rajkumar NN, Vijay RH. Immunological Subtypes of Acute Lymphoblastic Leukemia-Beyond Morphology: Experience from Kidwai State Cancer Institute, Bengaluru, India. J Assoc Phys India. 2017;65(7):14-7.
Rytting ME, Jabbour EJ, Jorgensen JL, Ravandi F, Franklin AR, Kadia TM, et al. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Munster, in adolescents and adults with acute lymphoblastic leukemia and comparison to the hyper-CVAD regimen. Am J Hematol. 2016;91:819-23.
Malkin D, Nichols KE, Zelley K, Schiffman JD. Predisposition to pediatric and hematologic cancers: a moving target. Am Soc Clin Oncol Educ Book. 2014:e44-55.
Lustosa de Sousa DW, de Almeida FV, Cavalcanti FH, de Oliveira MV. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival. Res Bras Hematol Hemoter. 2015;37(4):223-9.
Katz AJ, Chia V, Schoonen W, Kelsh M. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes Control 2015;26(11):1627-42.
Cabrera ME, Labra SG, Ugarte SU, Matutes E, Greaves MF. Inmunofenotipo, características clínicas y laboratorio de la leucemia linfoblástica aguda en Chile. Estudio de 500 niños y 131 adultos. Rev Med Chile. 1996;124(3):293-9.
Hirase S, Hasegawa D, Takahashi H, Moriwaki K, Saito A, Kozaki A, et al. Absolute lymphocyte count at the end of induction therapy is a prognostic factor in childhood acute lymphoblastic leukemia. Int J Hematol. 2015;102(5):594-601.
Amaru R, Torres G, Limachi M, Peñaloza R, Miguez H, Vargas ML, et al. Epidemiología de las leucemias en Bolivia: Evaluación de 933 casos. Cuad Hosp Clín. 2008;53(2):9-15.
Gim S, Ho J, Eun S, Ki B, Tak Y. Childhood acute lymphoblastic leukemia with hyperleukocytosis at presentation. Blood Res. 2014;49(1):29-35.
Marsán V, Macías C, Díaz G, Morales Y, Lam RM, Machín S, et al. Expresión del antígeno CD45 en la leucemia linfoide aguda pediátrica. Rev Cubana Hematol Inmunol Hemoter. [revista en Internet]. 2017 [citado 2017 Jul11];33(2):[aprox.0p.]. Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/513
Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, et al. CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol. 2011;39(12):1161-70.
Saunders AE, Johnson P. Modulation of immune cell signaling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22(3):339-48.
Saunder AE, Shim YA, Johnson P. Innate Immune Cell CD45 Regulates Lymphopenia-Induced T Cells Proliferation. J Immunol. 2014;193(6):2831-42.
Brahimi M, Saidi D, Touhami H, Bekadja MA. The use of CD45/SSC Dot Plots in the Classification of acute leukemias. J Hematol Thromb Dis. 2014;2(2):e107.
Cario G, Rhein P, Mitlohner R, Zimmermann M, Bandapalli O, Romey R. Hight CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated to the ALL-BFM 2000 protocol. Haematologica. 2014;99(1):103-10.
Gredelj-Simec N, Jelić-Puskarić B, Ostojić A, Siftar Z, Fiala D, Kardum-Skelin I, et al. Diagnostic and prognostic significance of CD45 antigen expression in hematology malignancies with main focus on acute leukemia. Acta Med Croatica. 2011;65(1):45-52