2019, Number 2
<< Back Next >>
Rev Cuba Endoc 2019; 30 (2)
Mechanisms involved in renal illness related to obesity
Guzmán HEA, Vázquez CB, Segura CD
Language: Spanish
References: 39
Page: 1-14
PDF size: 344.90 Kb.
ABSTRACT
Introduction: The prevalence of overweight and obese adults has increased substantially worldwide, in the last three decades. The accumulation of abdominal and visceral fat is highly correlated with renal adverse effects, through the accumulation of adipose tissue in and around the kidneys and the intrarenal accumulation of extracellular matrix. This obesity-related glomerulopathy is characterized in early stages by glomerular hypertrophy with or without secondary focal segmental glomerulosclerosis.
Objective: To review the mechanisms involved in the obesity related renal illness.
Methods: A bibliographical search on this topic was carried out in PubMed and Academic Google databases from 2013 to 2017.
Conclusions: The harmful effects of obesity on the renal vasculature are due to increased blood pressure, inflammation, hyperglycemia, lipotoxicity caused by an excess of non-β-oxidative metabolism of fatty acids, oxidative stress and activation of multiple neurohumoral systems. Excess visceral fat is a source of cytokines and other factors that create a means of oxidative stress and inflammation contributing to endothelial dysfunction, vascular stiffness and the development of atherosclerosis. Hyperfiltration and glomerular hypertrophy cause kidney damage associated with obesity. Compensatory hyperfiltration, which preserves the glomerular filtration rate, is accompanied by glomerular volume expansion, an increase in the components of the glomerular matrix, endothelial and mesangial cells. Following inflammation, neovascularization occurs, a compensatory mechanism to maintain perfusion of injured or ischemic tissues.
REFERENCES
Ludwig RG, Rocha AL, Mori MA. Circulating molecules that control brown/beige adipocyte differentiation and thermogenic capacity. Cell Biol Int. 2018;42(6):701-10.
Esteve Ràfols M. Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr. 2014;61(2):100-12.
Komaroff M. For Researchers on Obesity: Historical Review of Extra Body Weight Definitions. J Obes. 2016;2016:2460285 doi: 10.1155/2016/2460285.
Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016. Informe Final de Resultados. 2016 [acceso: 25 Oct 2018]. Disponible en: http://oment.uanl.mx/wp-content/uploads/2016/12/ensanut_mc_2016-310oct.pdf
Engin A. the Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol. 2017;960:221-45.
Cabandugama PK, Gardner MJ, Sowers JR. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med Clin North Am. 2017;101(1):129-37.
Martínez J, Torres PC, Juárez MA. Los ácidos grasos y la lipotoxicidad: implicaciones metabólicas. Rev Fac Med (Méx). 2013 ene-feb;56(1):5-18.
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;13 suppl 116(6):991-1006.
Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis. 2014;18;7:75-88.
Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404.
Baker NA, Muir LA, Washabaugh AR, Neeley CK, Chen SY, Flesher CG, et al. Diabetes-Specific Regulation of Adipocyte Metabolism by the Adipose Tissue Extracellular Matrix. J Clin Endocrinol Metab. 2017;1 suppl 102:(3)1032-43.
Nizar JM, Bhalla V. Molecular Mechanisms of Sodium-Sensitive Hypertension in the Metabolic Syndrome. Curr Hypertens Rep. 2017;19(8):60.
Tsuboi N, Utsunomiya Y, Hosoya T. Obesity-related glomerulopathy and the nephron complement. Nephrol Dial Transplant. 2013;28 Suppl 4:iv108-13.
Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS. Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48:74-82.
Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem. 2013; 24(12):2003-15.
Maeda A, Tamura K, Wakui H, Ohsawa M, Azushima K, Uneda K, et al. Effects of Ang II receptor blocker irbesartan on adipose tissue function in mice with metabolic disorders.nInt J Med Sci 2014; 27;11(6):646-51.
Cabandugama PK, Gardner MJ, Sowers JR. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med Clin North Am. 2017 Jan;101(1):129-37.
Schütten MT, Houben AJ, de Leeuw PW, Stehouwer CD. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology. 2017;32(3):197-209.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta. 2017;1863(5):1106-14.
Dikalov SI, Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol Heart Circ Physiol. 2013;15;305(10):H1417-27.
Seravalle G, Grassi G. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome. High Blood Press Cardiovasc Prev. 2016;23(3):175-9.
Demarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364-76.
Engin A. Endothelial Dysfunction in Obesity. Adv Exp Med Biol. 2017;960:345-79.
Declèves AE, Sharma K. Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens. 2015;24(1):28-36.
Morrison MC, Kleemann R. Role of Macrophage Migration Inhibitory Factor in Obesity, Insulin Resistance, Type 2 Diabetes, and Associated Hepatic Co-Morbidities: A Comprehensive Review of Human and Rodent Studies. Front Immunol. 2015;15;6:308.
Chade AR, Stewart N. Angiogenic cytokines in renovascular disease: do they have potential for therapeutic use?. J Am Soc Hypertens. 2013;7(2):180-90.
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life. 2015;67(3):145-59.
Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press. 2013;11(2):46-52.
Chade AR, Hall JE. Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity. Am J Nephrol. 2016;44(5):354-67.
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med. 2017;18;4:77.
Engin A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol. 2017;960:221-45.
Lin CH, Chen J, Zhang Z, Johnson GV, Cooper AJ, Feola J, et al. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney. Kidney Int. 2016;89(6):1281-92.
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801.
Caimi G, Hopps E, Noto D, Canino B, Montana M, Lucido D, et al. Protein oxidation in a group of subjects with metabolic syndrome. Diabetes Metab Syndr. 2013;7(1):38-41.
Sikorska D, Grzymislawska M, Roszak M, Gulbicka P, Korybalska K, Witowski J. Simple obesity and renal function. J Physiol Pharmacol. 2017;68(2):175-80.
Tsuboi N, Okabayashi Y, Shimizu A, Yokoo T. The Renal Pathology of Obesity. Kidney Int Rep. 2017;23;2(2):251-60.
Lee WS. Body fatness charts based on BMI and waist circumference. Obesity (Silver Spring). 2016;24(1):245-9.
Kovesdy CP, Furth SL, Zoccali C. Obesity and kidney disease: Hidden consequences of the epidemic. Afr J Prim Health Care Fam Med. 2017; 26;9(1):e1-e3.
Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, et al. Glomerulopathy Associated With Moderate Obesity. Kidney Int Rep. 2016;12;1(4):250-5.