2020, Number 2
Next >>
Acta Pediatr Mex 2020; 41 (2)
Demographic and clinical profile in patients with Spinal Muscular Atrophy: Series of 31 patients
Urrutia-Osorio ME, Ruiz-García M
Language: Spanish
References: 33
Page: 47-57
PDF size: 208.51 Kb.
ABSTRACT
Background: Spinal muscular atrophy (SMA) is the main cause of death due to genetic
disease in infants. It is a disorder caused by the degeneration of the motor neurons of the
anterior horn of the spinal cord. The clinical manifestations are weakness, hypotonia,
atrophy and psychomotor delay.
Objective: The aim of this study is to present the clinical manifestations in mexican
patients that could provide useful information to recognize promptly SMA and start
the implementation of the therapeutic management.
Patients and Methods: Retrospective, retrolective, observational and descriptive study
in which patients with clinical and/or molecular diagnosis of SMA were included. The
main demographic and clinical characteristics of this series of patients are described.
Results: 31 patients, 15/31 with SMA I, 13/31 with SMA II and 3/31 with SMA III.
All patients presented with muscle weakness, hypotonia and delayed psychomotor
development. The diagnosis was made at an average age of 30.81 months, median of
23, minimum 2 and maximum 108 months. Genetic diagnosis was made on 23/31.
Patients with SMA I had a fatal outcome.
Conclusions: SMA I is the most frequent type. Severe weakness and respiratory tract
infections are the most common reasons for consultation in SMA patients. Patients with
SMA III have a debut of the disease with orthopedic complications, which generate
disability later in life. There is a very important diagnostic delay of the disease and important
therapeutic limitations in Mexico, which limits the quality of life and prognosis
of patients with SMA in this country.
REFERENCES
Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371(9630):2120-33. doi: 10.1016/S0140- 6736(08)60921-6.
Simone C, et al. Is spinal muscular atrophy a disease of the motor neurons only: Pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73 (5): 1003-20. https://doi.org/10.1007/s00018-015-2106-9
Ogino S, et al. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 2002; 110: 301-7. https://doi.org/10.1002/ajmg.10425
Monani UR. Spinal muscular atrophy: A deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 2005; 48 (6): 885-96. https://doi.org/10.1016/j. neuron.2005.12.001
Zárate-Aspiros R, et al. Atrofia muscular espinal tipo 1: enfermedad de Werdnig-Hoffmann. Bol Med Hosp Infanti Mex. 2013; 70 (1): 448.
Kolb SJ, Kissel JT. Spinal Muscular Atrophy. Neurol Clin. 2015; 33 (4): 831-46. https://doi.org/10.1016/j. ncl.2015.07.004
Markowitz JA, et al. Spinal muscular atrophy: A clinical and research update. Pediatr Neurol 2012; 46 (1): 1-12. https://doi.org/10.1016/j.pediatrneurol.2011.09.001
Darras BT. Spinal Muscular Atrophies. Pediatr Clin NA [Internet] 2015; 62 (3): 743-66. http://dx.doi.org/10.1016/j. pcl.2015.03.010
D’Amico A, et al. Spinal muscular atrophy. Orphanet J Rare Dis 2011; 6 (1): 71. http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3231874&tool=pmcentrez&ren dertype=abstract
Madrid Rodríguez A, et al. Atrofia muscular espinal: Revisión de nuestra casuística en los últimos 25 años. An Pediatr 2014; 82 (3): 159-65. https://doi.org/10.1016/j. anpedi.2014.06.021
Arnold WD, et al. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2015; 51 (2): 157-67. https://doi.org/10.1002/mus.24497
Addisu Mesfin M, et al. Spinal Muscular Atrophy: Manifestations and Management. J Am Acad Orthop Surg 2012; 20 (6): 393-401. doi: 10.5435/JAAOS-20-06-393
Cha TH, et al. Noninvasive treatment strategy for swallowing problems related to prolonged nonoral feeding in spinal muscular atrophy type II. Dysphagia 2010; 25 (3): 261-4. https://doi.org/10.1007/s00455-009-9269-1
Zerres K, et al. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 2016; 146 (1): 67-72. http://dx.doi.org/10.1016/S0022- 510X(96)00284-5
Bertoli S, et al. Spinal Muscular Atrophy, types I and II: What are the differences in body composition and resting energy expenditure? Clin Nutr 2016;1-7. http://dx.doi. org/10.1016/j.clnu.2016.10.020
Finkel RS, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388 (10063): 3017-26.
Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Rev Neurother [Internet]. 2017;10: 955-62. https://doi.org/10.1080/14737175.2017.1364159
Bittles AH, et al. Consanguinity, human evolution, and complex diseases. Proc Natl Acad Sci 2010;107 (suppl_1): 1779-86. http://www.pnas.org /cgi/doi/10.1073/ pnas.0906079106
Ceballos-Quintal DP, et al. Estudio comparativo de consanguinidad entre una población suburbana y una urbana de Yucatán, México. Rev Biomed 1994; 5 (490): 70-6. http:// www.revbiomed.uady.mx/pdf/rb94523.pdf
Valencia HD, et al. Características clínicas de los pacientes menores de 18 años con atrofia muscular espinal en Medellín 2008-2013. Acta Neurológica Colomb 2016; 32(1): 9-17.
21. Gonzalez De Dios J, et al. Role of signs of fetal hypokinesia in the diagnosis of spinal muscular atrophy of neonatal onset. An Esp Pediatr 2002; 56 (3): 233-40. http://www. ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Pu bMed&dopt=Citation&list_uids=11864521
Howell MD, et al. TIA1 is a gender-specific disease modifier of a mild mouse model of spinal muscular atrophy. Nat Sci reports 2017; 7 (1): 7183. https://doi.org/10.1038/ s41598-017-07468-2
Grizelj R, et al. Tongue fasciculations in the newborn. Journal of Pediatrics. 2013. https://doi.org/10.1016/j. jpeds.2013.05.030
Mehta NM, et al. Nutritional status and nutrient intake challenges in children with spinal muscular atrophy. Pediatr Neurol 2016; 57: 80-3. https://doi.org/10.1016/j. pediatrneurol.2015.12.015
Sproule DM, et al. Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy. Neuromuscul Disord 2009; 19 (6): 391-6. https://doi.org/10.1016/j.nmd.2009.03.009
Ashrafzadeh F, et al. Spinal Muscular Atrophy : A Short Review. Int J Pediatr 2014; 2 (7): 211-5.
Tizzano E. Atrofia Muscular Espinal Infantil. Protoc diagnostico Ter pediátrica 2010; 1: 125-30.
Castiglioni C, et al. Atrofia muscular espinal: Caracterización clínica, electrofisiológica y molecular de 26 pacientes. Rev Med Chil 2011; 139 (2): 197-204.
Corches A. Current Aspects of Clinical Genetic Diagnosis in Werdnig-Hoffman Spinal Muscular Atrophy. Mod Med 2015; 22 (1): 47-53.
Finkel RS, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28 (3): 197.207. https://doi.org/10.1016/j.nmd.2017.11.004
Mercuri E, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28 (2): 103-15. https://doi.org/10.1016/j. nmd.2017.11.005
Finkel RS, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28 (3): 197-207. https://doi.org/10.1016/j.nmd.2017.11.004
Farrar MA, et al. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013; 162: 155-9. https://doi.org/10.1016/j. jpeds.2012.05.067