2020, Number 04
<< Back Next >>
Revista Médica Sinergia 2020; 5 (04)
Influence of Alzheimer's disease on synaptic neurotransmission systems
Álvarez CA, Rodríguez AJM, Salas BA
Language: Spanish
References: 56
Page: 1-16
PDF size: 199.25 Kb.
ABSTRACT
Alzheimer's disease represents the most frequent dementia worldwide. It is
characterized by being a neurodegenerative pathology with a complex pathophysiology in which multiple factors are involved. Since the main
organ affected is the brain, it usually manifests with cognitive, behavioral
and functional alterations, as well as histopathological alterations that lead
to the levels of some of the main neurotransmitters being affected, which
can provide information about the disease and the patient's condition. In
addition, because the disease can begin long before the first symptoms
occur, the variation in the different neurotransmitters could provide
information at the time of making a diagnosis or assessing the evolution of
the disease.
REFERENCES
Carazo ET, Blanco MN. Abordaje diagnóstico y terapéutico de la demencia en atención primaria. SEMERGENde Familia Medicina. 2001;27(11):575-586. https://doi.org/10.1016/S1138-3593(01)74030-0
Herrera-Rivero M, Hernández-Aguilar ME, Manzo J, Aranda-Abreu GE. Enfermedad de Alzheimer: inmunidad y diagnóstico. Revista de neurología. 2010;51(3):153-164. https://doi.org/10.33588/rn.5103.2009531
Maurer K, Volk S, Gerbaldo H. Auguste D and Alzheimer's disease. The Lancet. 1997;349(9064):1546-1549. https://doi.org/10.1016/S0140-6736(96)10203-8
Alzheimer A. Über eigenartige Krankheitsfälle des späteren Alters: (On certain peculiar diseases of old age. Hist Psychiatry. marzo de 1991;2(5):74-101. https://doi.org/10.1177/0957154X9100200506
Querfurth HW, LaFerla FM. Mechanisms of disease. N Engl J Med. 2010;362(4):329-344. https://doi.org/10.1056/NEJMra0909142
Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 1 de mayo de 2007;68(18):1501-8. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol. enero de 2018;25(1):59-70. https://doi.org/10.1111/ene.13439
Altuna-Azkargorta M, Mendioroz-Iriarte M. Biomarcadores sanguíneos en la enfermedad de Alzheimer. Neurología. 2018; https://doi.org/10.1016/j.nrl.2018.03.006
Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer's disease. The Lancet. julio de 2016;388(10043):505-17. https://doi.org/10.1016/S0140-6736(15)01124-1
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Rimmler JB, et al. Apolipoprotein E, survival in Alzheimer's disease patients, and the competing risks of death and Alzheimer's disease. Neurology. 1 de julio de 1995;45(7):1323-8. https://doi.org/10.1212/WNL.45.7.1323
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. The Lancet Neurology. marzo de 2011;10(3):241-52. https://doi.org/10.1016/S1474-4422(10)70325-2
González Rodríguez VM, Martín Martín C, Martín Prieto M, González Moneo MJ, García de Blas González F, Riu Subirana S. La enfermedad de Alzheimer. SEMERGEN - Medicina de Familia. enero de 2004;30(1):18-33. https://doi.org/10.1016/S1138-3593(04)74266-5
Rhein V, Eckert A. Effects of Alzheimer's amyloid-beta and tau protein on mitochondrial function-role of glucose metabolism and insulin signalling. Archives of Physiology and Biochemistry. enero de 2007;113(3):131- 41.https://doi.org/10.1080/13813450701572288
Reynaldo Fernández G, Pardo Andréu G, Guevara García M, Cascudo Barral N, Carrasco García MR. Teorías acerca de los mecanismos celulares y moleculares en la enfermedad de Alzheimer. Revista Cubana de Medicina. 2008;47(3):0-0.
Allegri RF, Arizaga RL, Bavec CV, Colli LP, Demey I, Fernández MC, et al. Enfermedad de Alzheimer. Guía de práctica clínica. Neurología Argentina. 2011;3(2):120-137. https://doi.org/10.1016/S1853-0028(11)70026-X
Gil Gregorio P. Criterios diagnósticos. Beneficios del diagnóstico precoz. Revista Española de Geriatría y Gerontología. junio de 2016;51:7-11. https://doi.org/10.1016/S0211-139X(16)30137-8
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β- peptide. Nature reviews Molecular cell biology. 2007;8(2):101. https://doi.org/10.1038/nrm2101
Mattson MP. Pathways towards and away from Alzheimer's disease. Nature. 2004;430(7000):631.https://doi.org/10.1038/nature02621
Rossi G, Dalprà L, Crosti F, Lissoni S, Sciacca FL, Catania M, et al. A new function of microtubule-associated protein tau: Involvement in chromosome stability. Cell Cycle. 15 de junio de 2008;7(12):1788- 94.https://doi.org/10.4161/cc.7.12.6012
Robles A, Del Ser T, Alom J, Pena-Casanova J. Propuesta de criterios para el diagnóstico clínico del deterioro cognitivo ligero, la demencia y la enfermedad de Alzheimer. Neurología. 2002;17(1):17-32.
Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology. agosto de 2007;6(8):734-46. https://doi.org/10.1016/S1474-4422(07)70178-3
López-Álvarez J, Agüera-Ortiz LF. Nuevos criterios diagnósticos de la demencia y la enfermedad de Alzheimer: una visión desde la psicogeriatría. Psicogeriatría. 2015;5(1):3-14.
Lister JP, Barnes CA. Neurobiological Changes in the Hippocampus During Normative Aging. Arch Neurol [Internet]. 1 de julio de 2009 [citado 11 de agosto de 2019];66(7). https://doi.org/10.1001/archneurol.2009.125
Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology. 9 de enero de 2001;56(1):127- 9.https://doi.org/10.1212/WNL.56.1.127
Kandimalla R, Reddy PH. Therapeutics of neurotransmitters in Alzheimer's disease. Journal of Alzheimer's Disease. 2017;57(4):1049-1069.https://doi.org/10.3233/JAD-161118
Mesulam M-M, Van Hoesen GW. Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain research. 1976;109(1):152-157.https://doi.org/10.1016/0006-8993(76)90385-1
Manzano-Palomo S, De la Morena-Vicente MA, Barquero MS. Neurotransmisores en la enfermedad de Alzheimer. Rev Neurol. 2006;42(6):350-353. https://doi.org/10.33588/rn.4206.2005219
H Ferreira-Vieira T, M Guimaraes I, R Silva F, M Ribeiro F. Alzheimer's disease: targeting the cholinergic system. Current neuropharmacology. 2016;14(1):101-115. https://doi.org/10.2174/1570159X13666150716165726
Strada O, Vyas S, Hirsch EC, Ruberg M, Brice A, Agid Y, et al. Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study. Proceedings of the National Academy of Sciences. 15 de octubre de 1992;89(20):9549- 53.https://doi.org/10.1073/pnas.89.20.9549
Gazulla J, Cavero-Nagore M. Glutamato y enfermedad de Alzheimer. Revista de neurología. 2006;42:427-32. https://doi.org/10.33588/rn.4207.2005223
Ruiz-Mejía AF, Pérez-Romero GE, Ángel-Macías MA. Ataque cerebrovascular isquémico: fisiopatología desde el sistema biomédico y su equivalente en la medicina tradicional china. Rev Fac Med. 1 de enero de 2017;65(1):137-44. https://doi.org/10.15446/revfacmed.v65n1.57508
Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas- Zarate C. Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurología. 2012;27(5):301-310. https://doi.org/10.1016/j.nrl.2011.10.014
Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid β, Glutamate, Excitotoxicity in Alzheimer's Disease: Are We on the Right Track? CNS Neurosci Ther. agosto de 2013;19(8):549- 55.https://doi.org/10.1111/cns.12095
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of psychiatry & neuroscience: JPN. 2013;38(1):6.https://doi.org/10.1503/jpn.110190
Rammes G, Hasenjäger A, Sroka-Saidi K, Deussing JM, Parsons CG. Therapeutic significance of NR2Bcontaining NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology. mayo de 2011;60(6):982-90.https://doi.org/10.1016/j.neuropharm.2011.01.051
Domingues A, Almeida S, Dacruzesilva E, Oliveira C, Rego A. Toxicity of β-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-d-aspartate receptor subunits. Neurochemistry International. mayo de 2007;50(6):872-80. https://doi.org/10.1016/j.neuint.2007.03.001
Chen J, Herrup K. Glutamine as a Potential Neuroprotectant in Alzheimer's Disease. En: Diet and Nutrition in Dementia and Cognitive Decline. Elsevier; 2015. p. 761-771. https://doi.org/10.1016/B978-0-12-407824-6.00070-7
Robinson SR. Neuronal expression of glutamine synthetase in Alzheimer's disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochemistry International. abril de 2000;36(4-5):471- 82.https://doi.org/10.1016/S0197-0186(99)00150-3
Butterfield DA, Poon HF, St. Clair D, Keller JN, Pierce WM, Klein JB, et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer's disease. Neurobiology of Disease. mayo de 2006;22(2):223- 32.https://doi.org/10.1016/j.nbd.2005.11.002
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegeneration. 2011;6(1):55. https://doi.org/10.1186/1750- 1326-6-55
Le Prince G, Delaere P, Fages C, Lefrançois T, Touret M, Salanon M, et al. Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochemical research. 1995;20(7):859- 862.https://doi.org/10.1007/BF00969698
Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's disease model. Nature communications. 2014;5:4159.https://doi.org/10.1038/ncomms5159
Sanacora G, Fenton LR, Fasula MK, Rothman DL, Levin Y, Krystal JH, et al. Cortical γ-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biological psychiatry. 2006;59(3):284-286 https://doi.org/10.1016/j.biopsych.2005.07.015
Walia V, Gilhotra N. GABAergic Influence in the Antidepressant Effect of Fluoxetine in Unstressed and Stressed Mice. J App Pharma Sci [Internet]. 2017 [citado 21 de agosto de 2019]; Disponible en: http://www.japsonline.com/admin/php/uploads/2203_pdf.pdf
Ulrich D. Amyloid-β impairs synaptic inhibition via GABAA receptor endocytosis. Journal of Neuroscience. 2015;35(24):9205-9210.https://doi.org/10.1523/JNEUROSCI.0950-15.2015
Garcia-Alloza M, Tsang SW, Gil-Bea FJ, Francis PT, Lai MK, Marcos B, et al. Involvement of the GABAergic system in depressive symptoms of Alzheimer's disease. Neurobiology of Aging. agosto de 2006;27(8):1110- 7.https://doi.org/10.1016/j.neurobiolaging.2005.06.003
Mario ÁS, Ivonne P, Arnoldo PS, Marilet ÁS, Lázaro Á. Fisiopatología de la enfermedad de Alzheimer. Rev Mex Neuroci. 2008; 9(3): 196-201
Lapuente FR, Navarro JPS. CAMBIOS NEUROPSICOLÓGICOS ASOCIADOS AL ENVEJECIMIENTO NORMAL. 1. 1998;14(1):27-43.
Bondareff W, Mountjoy CQ, Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology. 1982;32(2):164-164. https://doi.org/10.1212/WNL.32.2.164
Orozco AR, Briseño RE, De Robles XF, Wong GACO. Neuroimagen en enfermedad de Alzheimer y otras demencias. ARCHIVOS DE NEUROCIENCIAS. 2016;45.
Gallant M, Rak M, Szeghalmi A, Del Bigio MR, Westaway D, Yang J, et al. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue. J Biol Chem. 6 de enero de 2006;281(1):5-8.https://doi.org/10.1074/jbc.C500244200
McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol Stereoisomers Stabilize an Oligomeric Aggregate of Alzheimer Amyloid β Peptide and Inhibit Aβ-induced Toxicity. J Biol Chem. 16 de junio de 2000;275(24):18495-502.https://doi.org/10.1074/jbc.M906994199
Orellana DI, Lujambio DPS, Dhyver DC, Díaz DM, Gil DA, Jasso DRR, et al. TRABAJOS EN CARTEL. XXXVI CURSO ANUAL DE RADIOLOGÍA SMRI. :5.
Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, et al. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology. 2016;86(19):1754- 1761.https://doi.org/10.1212/WNL.0000000000002672
Kantarci K. Proton MRS in mild cognitive impairment [Internet]. Journal of Magnetic Resonance Imaging. 2013 [citado 31 de agosto de 2019]. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.23800
Modrego PJ, Pina MA, Fayed N, Díaz M. Changes in metabolite ratios after treatment with rivastigmine in Alzheimer's disease. CNS drugs. 2006;20(10):867-877. https://doi.org/10.2165/00023210-200620100-00006