2020, Number 2
<< Back Next >>
salud publica mex 2020; 62 (2)
Spatial distribution of manganese concentration and load in street dust in Mexico City
Aguilera A, Bautista F, Gogichaichvili A, Gutiérrez-Ruiz ME, Ceniceros-Gómez ÁE, López-Santiago NR
Language: English
References: 20
Page: 147-155
PDF size: 1503.61 Kb.
ABSTRACT
Objective. To obtain a first indication of the distribution
and extent of manganese (Mn) contamination in Mexico City.
Mn concentration and load in street dust were analyzed in
order to reveal the most contaminated areas.
Materials
and methods. 482 samples of street dust were analyzed
through inductively coupled plasma-optical emission spectroscopy.
The contamination factor (CF), the geoaccumulation
index (Igeo) and the spatial interpolations of the kriging
indicator were calculated.
Results. A slight influence of
anthropogenic activities is detected on the Mn content of
street dust. The highest levels of pollution by concentration
(Igeo=
uncontaminated to moderately contaminated) are
grouped towards the city’s north (industrial) and center
(commercial and high traffic) areas. The areas with the highest
Mn load were located towards the east and northwest
areas (Igeo=
moderately contaminated).
Conclusions. These
findings will serve as a baseline to assess future variations in
Mn content in Mexico City’s environment.
REFERENCES
Cortez-Lugo M, Rodríguez-Dozal S, Rosas-Pérez I, Alamo-Hernández U, Riojas-Rodríguez H. Modeling and estimating manganese concentrations in rural households in the mining district of Molango, Mexico. Environ Monit Assess. 2015;187(12):752 [cited April, 2019]. Available from: http://link. springer.com/10.1007/s10661-015-4982-8
Menezes-Filho JA, Fraga de Souza KO, Gomes Rodrigues JL, Ribeiro dos Santos N, Bandeira M de J, Koin NL, et al. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant. Environ Res. 2016;148:322-9. https://doi.org/10.1016/j.envres.2016.03.041
Rodrigues JLG, Araújo CFS, dos Santos NR, Bandeira MJ, Anjos ALS, Carvalho CF, et al. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ Res. 2018;167:66-77. https://doi.org/10.1016/j.envres.2018.07.007
Röllin HB, Nogueira CMCA. Manganese: Environmental Pollution and Health Effects. In: Nriagu JO, ed. Reference Module in Earth Systems and Environmental Sciences. Johannesburg, South Africa: Elsevier, 2019:617-29 [cited April, 2019]. Available from: https://linkinghub.elsevier.com/retrieve/ pii/B9780124095489115301
Gunier RB, Jerrett M, Smith DR, Jursa T, Yousefi P, Camacho J, et al. Determinants of manganese levels in house dust samples from the CHAMACOS cohort. Sci Total Environ. 2014;497-498:360-8 [cited April, 2019]. Available at: https://linkinghub.elsevier.com/retrieve/pii/ S004896971401170X
Röllin H, Mathee A, Levin J, Theodorou P, Wewers F. Blood manganese concentrations among first-grade schoolchildren in two South African cities. Environ Res. 2005;97(1):93-9. https://doi.org/10.1016/j. envres.2004.05.003
Abbott PJ. Methylcyclopentadienyl manganese tricarbonyl (MMT) in petrol: The toxicological issues. Sci Total Environ. 1987;67(2-3):247-55. https://doi.org/10.1016/0048-9697(87)90215-4
Smith D, Woodall GM, Jarabek AM, Boyes WK. Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology. 2018;64:177-84. https://doi.org/10.1016/j. neuro.2017.06.014
Roth JA. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res. 2006;39(1):45-57. https://doi. org/10.4067/S0716-97602006000100006
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. Environ Res. 2017;159:186-201. https://doi. org/10.1016/j.envres.2017.08.008
Fulk F, Succop P, Hilbert TJ, Beidler C, Brown D, Reponen T, et al. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach. Sci Total Environ. 2017;579:768-75. https://doi.org/10.1016/j.scitotenv.2016.11.030
Rodrigues JLG, Bandeira MJ, Araújo CFS, dos Santos NR, Anjos ALS, Koin NL, et al. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut. 2018;236:1004-13. https://doi.org/10.1016/j. envpol.2017.10.132
Ihl T, Bautista F, Cejudo Ruíz FR, Delgado M del C, Quintana Owen P, Aguilar D, et al. Concentration of toxic elements in topsoils of the metropolitan area of Mexico city: A spatial analysis using ordinary kriging and indicator kriging. Rev Int Contam Ambient. 2015;31(1):47-62 [cited April, 2019]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_ abstract&pid=S0188-49992015000100004&lng=en&nrm=iso&tlng=en
Kabata-Pendias A. Trace elements in soils and plants. 4th ed. New York: CRC Press, 2011 [cited April, 2019]. Available from: https://n9.cl/17j
Declercq Y, Samson R, Castanheiro A, Spassov S, Tack FMG, Van De Vijver E, et al. Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. Sci Total Environ. 2019;685:345-56. https://doi.org/10.1016/j.scitotenv.2019.05.379
Delgado C, Bautista F, Gogichaishvili A, Cortés JL, Quintana P, Aguilar D, et al. Identificación de las zonas contaminadas con metales pesados en el polvo urbano de la Ciudad de México. Rev Int Contam Ambie. 2019;35(1):81-100 [cited April, 2019]. Available from: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/ RICA.2019.35.01.06/46811
Guvenç N, Alagha O, Tuncel G. Investigation of soil multi-element composition in Antalya, Turkey. Environ Int. 2003(5):631-40. https://doi. org/10.1016/S0160-4120(03)00046-1
Aguilera A, Armendariz C, Quintana P, García-Oliva F, Bautista F. Influence of Land Use and Road Type on the Elemental Composition of Urban Dust in a Mexican Metropolitan Area. Polish J Environ Stud. 2019;28(3):1535-47. https://doi.org/10.15244/pjoes/90358
Shi D, Lu X, Wang Q. Evaluating Health Hazards of Harmful Metals in Roadway Dust Particles Finer than 100 μm. Polish J Environ Stud. 2018;27(6):2729-37. https://doi.org/10.15244/pjoes/80820
Safiur Rahman M, Khan MDH, Jolly YN, Kabir J, Akter S, Salam A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci Total Environ. 2019;660:1610-22. https://doi.org/10.1016/j.scitotenv.2018.12.425