2019, Number 2-3
<< Back Next >>
MEDICC Review 2019; 21 (2-3)
Dengue cases in Colombia: Mathematical forecasts for 2018-2022
López-Montenegro LE, Pulecio-Montoya AM, Marcillo-Hernández GA
Language: English
References: 31
Page: 38-45
PDF size: 332.92 Kb.
ABSTRACT
INTRODUCTION Dengue is a disease caused by any one of five virus serotypes and transmitted to humans by the Aedes aegypti mosquito. Climate change and health conditions have combined to make dengue a global public health problem. The situation is especially serious in Colombia, where by week 36 of 2018, dengue incidence was 96 cases per 100,000 population, with a total of 111 deaths. Different mathematical and statistical models have been proposed to understand the dynamics of transmission and consequently to apply control strategies to reduce the number of dengue cases.
OBJECTIVE Forecast the number of dengue cases expected in Colombia from 2018 through 2022 with the stochastic Auto-Regressive Integrated Moving Average (ARIMA) model and use the results to adjust the parameters of an ordinary differential equations model in order to determine the disease’s basic reproduction number in the year presenting the highest number of dengue cases.
METHODS An ecological time series study was conducted to forecast dengue incidence in Colombia from 2018 through 2022. The data were compiled from Colombia’s National Health Institute series on dengue cases reported by epidemiological week from 2009 to 2017. The stochastic ARIMA time series model was applied. Forecasts were then analyzed, and the year with the highest number of predicted cases was used to adjust the parameters of an ordinary differential equations model (ODE) through nonlinear least squares regression to calculate the vectorial capacity of the transmitting mosquito.
RESULTS Forecasts of the total number of dengue cases per year in Colombia for the following five years were: 32,411 (2018); 88,221 (2019); 56,392 (2020); 47,940 (2021); and 77,344 (2022). The highest number of cases was forecast for 2019. Values for the parameters affecting dengue transmission that year (by the year’s four quarters), such as recovery rate (0.0992, 0.0838, 0.1177, and 0.1535, respectively), vectorial capacity of the transmitting mosquito (0.1720, 0.1705, 0.1204, and 0.2147, respectively) and the basic dengue reproduction number (1.73, 2.03, 1.02, and 1.40, respectively) were estimated, indicating that most cases would occur in the second quarter and, since the basic reproduction number values were >1, the disease would persist in the country throughout the entire year.
CONCLUSIONS ARIMA model forecasts for 2018 through 2022 predicted the highest incidence of dengue cases in Colombia would occur in 2019. Comparison of ARIMA model forecasts and the ODE model allowed projections of possible variations in dengue cases reported, and the basic reproduction number predicted that dengue would persist throughout 2019.
REFERENCES
Rossati A. Global warming and its health impact. Int J Occupational Environ Med. 2017 Jan;8(1):7‒20.
Mustafa M, Rasotgi V, Jain S, Gupta V. Discovery of fi fth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015 Jan;71(1):67‒70.
Pérez-Castro R, Castellanos JE, Olano VA, Matiz MI, Jaramillo JF, Vargas SL, et al. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia. Mems Inst Oswaldo Cruz. 2016 Apr;111(4):233‒40.
Muller DA, Depelsenaire AC, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017 Mar 1;215(Suppl 2):S89‒95.
Soo KM, Khalid B, Ching SM, Chee HY. Metaanalysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One [Internet]. 2016 May 23 [cited 2017 Aug 2];11(5):e0154760. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4877104/pdf/pone.0154760.pdf
Anantapreecha S, Chanama S, A-nuegoonpipat A, Naemkhunthot S, Sa-Ngasang A, Sawanpanyalert P, et al. Serological and virological features of dengue fever and dengue haemorrhagic fever in Thailand from 1999 to 2002. Epidemiol Infect. 2005 Jun;133(3):503–7.
López LE, Loaiza Muñoz A, Olivar Tost G. A mathematical model for transmission of dengue. App Mathematical Sci. 2016;10(7):345‒55.
Amaku M, Coutinho F, Raimundo S, Lopez L, Burattini M, Massad E. A comparative analysis of the relative effi cacy of vector-control strategies against dengue fever. Bull Math Biol. 2014 Mar;76(3):697‒717.
Koiller J, Da Silva MA, Souza MO, Codeço C, Iggidr A, Sallet G. Aedes, wolbachia and dengue. [Research Report] RR-8462 [Internet]. Rocquencourt (FR): National Institute for Research in Computer Science and Automation (INRIA). 2014 Jan [cited 2017 Oct 3]. 44 p. Available from: https://hal.inria.fr/hal-00939411/document
Box GEP, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control. 5th ed. New Jersey: John Wiley & Sons Inc; 2015 Jun. 712 p.
Wang KW, Deng C, Li JP, ZhangYY, Li XY, Wu MC. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol Infection. 2017 Apr;145(6):1118‒29.
Sierra W, Argoty C, Franco H. Varicella Incidence Rate Forecasting in Bogotá DC (Colombia) by Stochastic Time Series Analysis. In: Workshop on Engineering Applications. Cham (CH): Springer; 2017 Aug 29. p. 647‒58.
Pan Y, Zhang M, Chen Z, Zhou M, Zhang Z. An ARIMA based model for forecasting the patient number of epidemic disease. In: Service Systems and Service Management (ICSSSM), 2016 [Internet]. 13th International Conference on IEEE; 2016 Jun 24–26; San Francisco, California, USA. California: IEEE;2016 Aug 11 [cited 2017 Nov 12]. p.1‒4. Available from: https://ieeexplore .ieee.org/abstract/document/7538560
Dinh TQ, Le HV, Cao TH, Luong QC, Diep HT. Forecasting the magnitude of dengue in Southern Vietnam. In: Asian Conference on Intelligent Information and Database Systems. Berlin: Springer; 2016. p. 554‒63.
SIVIGILA. Boletín Epidemiológico semana 23 del 2018 [Internet].Bogotá. National Helth Institute (CO); 2018 Jun [cited 2018 Jul 25]. 34 p. Available from: http://www.ins.gov.co/buscador -eventos/Paginas/Vista-Boletin-Epidemilogico .aspx. Spanish.
SIVIGILA. Boletín Epidemiológico semana 36 del 2018 [Internet]. Bogotá: Instituto Nacional de Salud (CO); 2018 [cited 2018 Sep 20]. Available from: http://www.ins.gov.co/buscador-eventos/ Paginas/Vista-Boletin-Epidemilogico.aspx. Spanish.
Padilla JC, Lizarazo FE, Murillo OL, Mendigaña FA, Pachón E, Vera MJ. Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990‒2016. Biomédica. 2017;37(Suppl 2):27‒40. Spanish.
Cryer JD, Chan KS. Time Series Analysis with Applications in R. 2nd ed. New York: Springer; 2008 Jan 1.
Baayen RH. Analyzing Linguistic Data: A practical introduction to statistics using R.1st ed. Cambridge: Cambridge University Press [Internet]. 2008 Mar 17 [cited 2018 Sep 12]. 390 p. Available from: http://www.sfs.uni-tuebingen.de/~hbaayen/ publications/baayenCUPstats.pdf
García Díaz JC. Predicción en el dominio del tiempo. Análisis de series temporales para ingenieros. Valencia: Editorial Universitat Politécnica de Valéncia; 2016 Oct 19. 270 p. Spanish.
Zill D, Cullen M. Ecuaciones diferenciales. Mexico, DF: McGraw-Hill Interamericana; 2013. Spanish.
Bustamam A, Aldila D, Yuwanda A. Understanding dengue control for short-and long-term intervention with a mathematical model approach. J App Math. 2018 Jan 1;2018.
Sardar T, Rana S, Chattopadhyay J. A mathematical model of dengue transmission with memory. Comm Nonlinear Sci Numer Simulat. 2015;22(1‒3):511‒25.
Departamento Administrativo Nacional de Estadísticas (DANE) (CO). Proyecciones nacionales y departamentales de población 2005‒2020. Estudios post-censales [Internet]. Bogotá: DANE; 2010 [cited 2017 May 23]. Available from: http:// www.dane.gov.co/files/investigaciones/pobla cion/proyepobla06_20/7Proyecciones_pobla cion.pdf. Spanish.
Basáñez MG, Rodríguez DJ. Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. Entomotrópica. 2004 Dec;19(3):113‒34.Spanish.
Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014 Mar 6;9(3):e89783.
Brauer F, Castillo-Chávez C, editors. Mathematical models in population biology and epidemiology. 2nd ed. New York: Springer; 2012.
MathWorks, Inc. MATLAB: Application program interface guide. Massachusetts: Math- Works;1996. 357 p.
Cortes F, Turchi Martelli CM, Arraes de Alencar Ximenes R, Montarrouos UR, Siqueira Junior JB, Gonçalves Cruz O, et al. Time series analysis of dengue surveillance data in two Brazilian cities. Acta Trop. 2018 Jun;182:190‒7.
Withanage GP, Viswakula SD, Nilmini Silva Gunawardena YI, Hapugoda MD. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka. Parasit Vectors. 2018 Apr 24:11(1):262.
Sepúlveda-Salcedo LS, Vasilieva O, Martínez- Romero HJ, Arias-Castro JH. Ross McDonald: Un modelo para la dinámica del dengue en Cali, Colombia. Rev Salud Pública. 2016 Feb;17(5):749‒61. Spanish.