2018, Number 4
<< Back Next >>
MEDICC Review 2018; 20 (4)
Estimating normal values of rare T-lymphocyte populations in peripheral blood of healthy Cuban adults
Villegas-Valverde CA, Kokuina E, Breff-Fonseca MC
Language: English
References: 47
Page: 20-26
PDF size: 300.60 Kb.
ABSTRACT
INTRODUCTION Flow cytometry allows immunophenotypic characterization of important lymphocyte subpopulations for diagnosis of diseases such as cancer, autoimmune diseases, immunodeficiencies and some infections. Normal values of rare lymphoid cells in blood, quantified by cytometry, vary among different populations; so it is indispensable to obtain normal national values that can be used in clinical practice.
OBJECTIVE Characterize distribution of rare T-lymphocyte populations in peripheral blood, specifically double-positive T, natural killer T and activated T lymphocytes, as well as their relationship to sex and age.
METHODS A cross-sectional study was carried out in 129 adults (68 women, 61 men) aged >18 years, without chronic diseases or unhealthy habits, who signed informed consent. Peripheral blood was collected for immunophenotyping of lymphocyte subpopulations with monoclonal antibodies specific for CD4+CD8+ double-positive T cells, CD3+CD56+ natural killer T cells, and CD3+CD25+HLA-DR+ activated T cells. An eight-color flow cytometer (Beckman Coulter Gallios) was used. The analytic strategy was modified, associating variables of interest in a single graphic, using conventional monoclonal labeling antibodies. Medians and minimum and maximum percentiles (2.5 and 97.5, respectively) were used as descriptive statistics, stratified by sex, for cell counts and percentages. A linear regression model was applied to assess age effects and a two-tailed Mann-Whitney U test for independent samples was used to assess sex differences. The significance threshold was set as p ≤0.05.
RESULTS Median percentages of total lymphocytes: natural killer T cells 6.3% (1.4%–23%) in men and 4.7% (0.8%–11.3%) in women (p = 0.003); activated T cells 1.0% (0.2%–2.2%) in men and 1.2% (0.4%–3.1%) in women, without statistical significance; and double positives 0.8% (0.1%–4.2%) in men and 0.9% (0.3–5.1) in women, also without statistical significance. Median cell counts (cells/mL) were: natural killer T cells, 126 (27–580) in men and 105 (20–279) in women (p = 0.023); activated T cells: 20 (4–46) in men and 25 (7–75) in women, (p = 0.013) and double-positive T cells: 17 (2–85) in men and 21 (7–154) in women, without statistical significance. Sex influenced natural killer T cells, but age did not.
CONCLUSIONS Age does not affect counts and percentages of rare T lymphocyte subpopulations in the blood of healthy Cuban adults. Sex differences found for some phenotypes suggest the need for different reference values for women and men.
REFERENCES
Zhang K, Wang F, Zhang M, Cao X, Yang S, Jia S, et al. Reference ranges of lymphocyte subsets balanced for age and gender from a population of healthy adults in Chongqing district of China. Cytometry B Clin Cytom. 2016 Nov;90(6):538–42.
Melzer S, Zachariae S, Bocsi J, Engel C, Loffl er M, Tárnok A. Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color fl ow Cytometry. Cytometry B Clin Cytom. 2015 Jul–Aug;88(4):270–81.
Sorrenti V, Marenda B, Fortinguerra S, Cecchetto C, Quartesan R, Zorzi G, et al. Reference values for a panel of cytokinergic and regulatory lymphocyte subpopulations. Immune Netw. 2016 Dec;16(6):344–57.
Cóndor JM, Álvarez M, Cano L, Matos E, Leiva C, Paredes JA. Intervalos de referencia de subpoblaciones linfocitarias de sangre periférica en adultos sanos de Lima, Perú. Rev Peru Med Exp Salud Publica. 2013;30(2):235–40. Spanish.
Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008 Apr 15;111(8):3941–67.
Quandt D, Rothe K, Scholz R, Baerwald CW, Wagner U. Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profi le are increased in rheumatoid arthritis. PLoS One. 2014 Mar 25;9(3):e93293.
Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR- αß+ CD4- CD8- double-negative T cells. Eur J Immunol. 2011 Mar;41(3):739–48.
Besedovsky L, Dimitrov S, Born J, Lange XT. Nocturnal sleep uniformly reduces numbers of different T-cell subsets in the blood of healthy men. Am J Physiol Regul Integr Comp Physiol. 2016 Oct 1;311(4):R637–R42.
Gómez A, González C, Ávila LM, Casas MC, Padilla S. Coexpresión de CD4 y CD8 en linfocitos de sangre periférica en pacientes positivos para VIH. Asoc Colomb Infectol. 2008 Dec;12(4):267– 76. Spanish.
Yazici S, Bülbül Başkan E, Budak F, Oral B, Adim SB, Ceylan Kalin Z, et al. Flow cytometric analysis of T, B, and NK cells antigens in patients with mycosis fungoides. J Immunol Res [Internet]. 2015 [cited 2017 Jul 8];2015:856340. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ pmid/26788525/
Zahran AM, Saad K, Elsayh KI, Alblihed MA. Characterization of circulating CD4+ CD8+ double positive and CD4− CD8− double negative T-lymphocyte in children with β-thalassemia major. Int J Hematol. 2017 Mar;105(3):265–71.
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the immune system: more than a marker for cytotoxicity? Front Immunol. 2017 Jul 24;8:892.
Lambert C, Genin C. CD3 bright lymphocyte population reveal γδ T cells. Cytometry B Clin Cytom. 2004 Sep;61(1):45–53.
Paget C, Chow MT, Gherardin NA, Beavis PA, Uldrich AP, Duret H, et al. CD3bright signals on γδ T cells identify IL-17A-producing Vγ6Vδ1+ T cells. Immunol Cell Biol. 2015 Feb; 93(2):198–212.
Maecker H, Trotter J. Selecting reagents for multicolor fl ow cytometry. Application note. BD Biosci [Internet]. 2012 Jan [cited 2017 Jul 8]. Available from: http://www.unav.edu/documents/4576308/ a258d356-b38c-4d2d-b322-ef0c6b0308b4
Kriegel MA, Adam-Klages S, Gabler C, Blank N, Schiller M, Scheidig C, et al. Anti-HLA-DR-triggered monocytes mediate in vitro T cell anergy. Int Immunol. 2008 Apr;20(4):601–13.
Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J, et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffi c. Cytometry B Clin Cytom. 2010;78 Suppl 1:47–60.
Erazo-Borrás LV, Álvarez-Álvarez JA, Trujillo Vargas CM. Linfocitos NKT invariantes: ontogenia, fenotipo y función. Inmunología. 2014 Apr– Jun;33(2):51–9. Spanish.
Waldowska M, Bojarska-Junak A, Roliński J. A brief review of clinical trials involving manipulation of invariant NKT cells as a promising approach in future cancer therapies. Cent Eur J Immunol. 2017;42(2):181–95.
Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, et al. Reference values for T, B and NK human lymphocyte subpopulations in adults. Data Brief. 2017 Apr 21;12:400–4.
Vély F, Barlogis V, Vallentin B, Neven B, Piperoglou C, Ebbo M, et al. Evidence of innate lymphoid cell redundancy in humans. Nat Immunol. 2016 Nov;17(11):1291–9.
Zook EC, Kee BL. Development of innate lymphoid cells. Nat Immunol. 2016 Ju 21;17(7):775–82.
Michel JJ, Griffi n P, Vallejo AN. Functionally diverse NK-Like T cells are effectors and predictors of successful aging. Front Immunol. 2016 Nov 24;7:530.
Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011 Feb;11(2):131–42.
Tirado-Rodríguez P, editor. Guía clínica para el abordaje de trastornos relacionados con el consumo de alcohol. Andalucía: Consejería de Igualdad y Bienestar Social de Andalucía; 2007. 226 p. Spanish.
World Medical Association. Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA [Internet]. 2013 Nov 27 [cited 2018 Jun 13];310(20):2191–4. Available from: https://jamanetwork.com/journals/jama/full article/10.1001/jama.2013.281053
Ghia P, Prato G, Stella S, Scielzo C, Geuna M, Caligaris-Cappio F. Age-dependent accumulation of monoclonal CD4+CD8+double positive T lymphocytes in the peripheral blood of the elderly. Brit J Haematol. 2007 Dec;139(5):780–90.
Nascimbeni M, Shin EC, Chiriboga L, Kleiner DE, Rehermann B. Peripheral CD4+CD8+ T cells are differentiated effector memory cells with antiviral functions. Blood. 2004 Jul 15;104(2):478–86.
Quandt D, Rothe K, Scholz R, Baerwald CW, Wagner U. Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profi le are increased in rheumatoid arthritis. PLoS One. 2014 Mar 25;9(3):e93293.
Waschbisch A, Sammet L, Schröder S, Lee DH, Barrantes-Freer A, Stadelmann C, et al. Analysis of CD4+ CD8+ double-positive T cells in blood, cerebrospinal fl uid and multiple sclerosis lesions. Clin Exp Immunol. 2014 Aug;177(2):404–11.
Frahm MA, Picking RA, Kuruc JD, McGee KS, Gay CL, Eron JJ, et al. CD4+CD8+ T-cells represent a signifi cant portion of the anti-HIV T-cell response to acute HIV infection. J Immunol. 2012 May 1;188(9):4289–96.
Herndler-Brandstetter D, Schwanninger A, Grubeck-Loebenstein B. CD4+ CD8+ T cells in young and elderly humans. Immunology. 2007 Mar;120(3):292–4.
Rojas-Pandales F, Bolaños N, Mercado M, González JM, Cuéllar A, Cifuentes-Rojas C. Valores de referencia de células asesinas naturales (NK y NKT) en donantes de sangre de Bogotá. Acta Med Colomb. 2007 Jul–Sep;32(3):124–8. Spanish.
Bisset LR, Lung TL, Kaelin M, Luwing E, Dubs RW. Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol. 2004 Mar;72(3):203–12.
Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, et al. Reference values for T, Band NK human lymphocyte subpopulations in adults. Data Brief. 2017 Apr 21;12:400–4.
Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, et al. Circulating and tumor-infi ltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep. 2016 Feb 3;6:e20358. DOI: 10.1038/srep20358.
Fernández CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol. 2014 Aug;92(7):578–90.
Gebremeskel S, Slauenwhite D, Johnston B. Reconstitution models to evaluate natural killer T cell function in tumor control. Immunol Cell Biol. 2016 Jan;94(1):90–100.
Taniguchi M, Harada M, Dashtsoodol N, Kojo S. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(7):292– 304.
Starska K, Głowacka E, Kulig A, Lewy-Trenda I, Bryś M, Lewkowicz P. The role of tumor cells in the modifi cation of T lymphocytes activity — the expression of the early CD69+, CD71+ and the late CD25+, CD26+, HLA/DR+ activation markers on T CD4+ and CD8+ cells in squamous cell laryngeal carcinoma. Part I. Folia Histochem Cytobiol. 2011;49(4):579–92.
Lúdvíksson BR, Sneller MC, Chua KS, Talar- Williams C, Langford CA, Ehrhardt RO, et al. Ac tive Wegener’s granulomatosis is associated with HLA-DR1 CD41 T cells exhibiting an unbalanced Th1-Type T cell cytokine pattern: reversal with IL- 10. J Immunol. 1998 Apr 1;160(7):3602–9.
Geraldes L, Morgado J, Almeida A, Todo-Bom A, Santos P, Paiva A, et al. Expression patterns of HLA-DR+ or HLA-DR– on CD4+/CD25++/CD- 127low regulatory T cells in patients with allergy. J Investig Allergol Clin Immunol. 2010;20(3):201–9.
Starska K, Głowacka E, Kulig A, Lewy-Trenda I, Bryś M, Lewkowicz P. Prognostic value of the immunological phenomena and relationship with clinicopathological characteristics of the tumor— the expression of the early CD69+, CD71+ and the late CD25+, CD26+, HLA/DR+ activation markers on T CD4+ and CD8+ cells in squamous cell laryngeal carcinoma. Part II. Folia Histochem Cytobiol. 2011;49(4):593–603.
Monahan R, Stein A, Gibbs K, Bank M, Bloom O. Circulating T cell subsets are altered in individuals with chronic spinal cord injury. Immunol Res. 2015 Dec;63(1–3):3–10.
Arneth B. Activated CD4+ and CD8+ T cell proportions in multiple sclerosis patients. Infl ammation. 2016 Dec;39(6):2040–4.
Wakiguchi H, Hasegawa S, Suzuki Y, Kudo K, Ichiyama T. Relationship between T-cell HLA -DR expression and intravenous immunoglobulin treatment response in Kawasaki disease. Pediatr Res. 2015 Apr;77(4):536–40.
Jaramillo-Ruiz LD, Muñoz-Fernández MA, Correa-Rocha R. Estudio preliminar sobre las alteraciones fenotípicas de las células Treg causadas por la infección VIH en pacientes adultos infectados. Rev Complut Cienc Vet. 2011;5(2):49–64. Spanish.