2019, Number 3
<< Back Next >>
Rev Med Inst Mex Seguro Soc 2019; 57 (3)
Respiratory immune system and consequences due to particulate matter in air pollution
Flood-Garibay JA, Méndez-Rojas MÁ, Pérez-Cortés EJ
Language: Spanish
References: 35
Page: 170-180
PDF size: 247.37 Kb.
ABSTRACT
The respiratory system is commonly known for being
responsible for gaseous exchange. However, chronic
exposure to air born pollution increases each year the
number of asthma, chronic obstructive pulmonary
disease (COPD), and lung cancer cases, which compels
us to view the lung as a vulnerable organ due to the fact
that because of its nature it enters in contact with
substances present in the environment. Fortunately, the
immune response mechanism acts locally in the lung in
order to modulate the inflammatory response and to
facilitate the clearance of inhaled pathogens, as well as
volatile organic compounds (VOCs), metals, sulphur and
nitrogen oxides, ozone and particulate matter (PM).
Expanding our understanding of the molecular
mechanisms underlying inflammation and pathology
induced by airborne contaminant particles in the long
term can help to develop strategies to reduce the risks of
exposure to some of the most hazardous air pollutants,
as well as to reduce the toxicity of nanomaterials and
may also help to identify therapeutic targets to be used
in the preventive treatment of susceptible groups.
REFERENCES
Husain AN. The Lung. In: Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. 9th ed. Philadelphia: Saunders, Elsevier Inc.; 2015. pp. 669-726.
Merkle CJ. Cellular adaptation, injury, and death. In: Grossman S, Porth CM. Porth´s Pathophysiology Concepts of Altered Health States. 9th ed. China: Wolters Kluwer Health | Lippincott Williams & Wilkins; 2014. pp. 101-17.
Effros RM. Anatomy, development, and physiology of the lungs. GI Motility online. 2006; May 16. Disponible en https://www.nature.com/gimo/contents/pt1/full/gimo73.ht ml [Consultado el 28 de julio de 2018].
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat. 2017;209:78-92. doi: 10.1016/j.aanat.2016.09.008.
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem. 2017; 86:585-608. doi: 10.1146/annurev-biochem-061516-044847.
Po JYT, FitzGerald JM, Carlsten C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax. 2011;66(3):232-9. doi: 10.1136/thx.2010.147884.
Xia X, Zhang A, Liang S, Qi Q, Jiang L, Ye Y. The Association between Air Pollution and Population Health Risk for Respiratory Infection: A Case Study of Shenzhen, China. Int J Environ Res Public Health. 2017;14(9). pii: E950. doi: 10.3390/ijerph14090950.
Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci. 2017;18(2). pii: E243. doi: 10.3390/ijms18020243.
Li JJ, Muralikrishnan S, Ng CT, Yung LLY, Bay BH. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood). 2010;235(9):1025-33. doi: 10.1258/ebm. 2010.010021.
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39.
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A Work Group Report on Ultrafine Particles (AAAAI) Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016;138(2):386-6. doi: 10.1016/j.jaci.2016.02.023
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015; 16(1):27-35. doi: 10.1038/ni.3045.
Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science. 2012;337(6097):937-41. doi: 10.1126/science.1223012.
Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert S, Maeda Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009; 119(10):2914-24. doi: 10.1172/JCI39731.
Bou Saab J, Losa D, Chanson M, Ruez R. Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 2014;588(8):1288-96. doi: 10.1016/j.febslet.2014. 02.059.
Martin FJ, Prince AS. TLR2 regulates gap junction intercellular communication in airway cells. J Immunol. 2008; 180(7):4986-93.
Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684-92. doi: 10.1038/nm.2737.
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, et al. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun. 2018;10(5-6):487-501. doi: 10.1159/000487057.
Collin M, Bigley V, Haniffa M, Hambleton S. Human dendritic cell deficiency: the missing ID? Nat Rev Immunol. 2011;11(9):575-83. doi: 10.1038/nri3046.
Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36-44. doi: 10.1038/ni.3052.
Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81- 93. doi: 10.1038/nri3600.
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45-56. doi: 10.1038/ni.3049.
Wright JR. Immunoregulatory Functions of Surfactant Proteins. Nat Rev Immunol. 2005;5(1):58-68.
Perez-Gil J, Weaver TE. Pulmonary Surfactant Pathophysiology: Current Models and Open Questions. Physiology (Bethesda). 2010;25(3):132-41. doi: 10.1152/physiol.00006.2010.
Boraschi D, Italiania P, Palomba R, Decuzzi P, Duschlc A, Fadeeld B, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol. 2017;34: 33-51. doi: 10.1016/j.smim.2017.08.013.
Martinon F, Burns K, Tschopp J. The Inflammasome A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Mol Cell. 2002;10(2):417-26.
Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674-7.
Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol. 2011;173(6):603-20. doi: 10.1093/aje/kwq403.
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296(6):L911-20. doi: 10.1152/ajplung. 00025.2009.
Rosas Pérez I, Serrano J, Alfaro-Moreno E, Baumgardner D, García-Cuellar C, Martín Del Campo JM et al. Relations between PM10 composition and cell toxicity: A multivariate and graphical approach. Chemosphere. 2007;67(6):1218-28.
El-Ansary A, Al-Daihan S. On the Toxicity of Therapeutically Used Nanoparticles: An Overview. J Toxicol. 2009;2009:754810. doi: 10.1155/2009/754810.
Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro- Moreno E. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies. BioMed Research International. 2013;2013: 1-22.
Singh U, Reponen T, Cho KJ, Grinshpun SA, Adhikari A, Levin L, et al. Airborne Endotoxin and β-D-glucan in PM1 in Agricultural and Home Environments. Aerosol and Air Quality Research. 2011;11(4):376-86.
Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget. 2017;8(47): 81813-24.
Méndez-Rojas MA, Sánchez-Salas J, Santillan-Urquiza E. Toxicology of Nanomaterials-The Dawn of Nanotoxicology. In: Kharisov BI, Kharissova OV, and Ortiz-Mendez U. CRC concise encyclopedia of nanotechnology. 1st ed. Florida: CRC Press; 2016. pp. 860-70.