2019, Number 2
<< Back Next >>
Rev Cubana Med Trop 2019; 71 (2)
Antiophidic activity of extracts from Myrsine guianensis, Jatropha curcas and Zanthoxylum monogynum
Xavier OS, Souza STD, Tumang FB, Alves LM, Machado MM, Melo RV, Chagas NJ, Fonseca PV, Moreira ILF
Language: Spanish
References: 39
Page: 1-17
PDF size: 589.09 Kb.
ABSTRACT
Objective: Evaluate the inhibition of venoms from the snakes Bothrops alternatus and Bothrops moojeni by plant extracts from Jatropha curcas, Myrsine guianensis and Zanthoxylum monogynum in terms of coagulant, phospholipase and hemorrhagic activities.
Methods: The plant extracts were obtained by lyophilization of leaves of Jatropha curca, Myrsine guianensis and Zanthoxylum monogynum. In vitro inhibition tests were performed with a positive control group (10 μg of crude venom), experimental groups receiving a mixture of the venom with each of the extracts at concentrations of 5 to 500 μg, and a negative control group (500 μg of extract). In vivo tests were performed with Balb/c mice (n = 4). The mice in the positive control group were injected only the venom (25 μg), the experimental groups received a mixture of the venom with each of the extracts at concentrations of 25 to 500 μg, and the negative control group received only extract (500 μg).
Results: Jatropha curcas and Myrsine guianensis significantly inhibited phospholipase activity at a 1:0.5 (venom:extract) proportion. Coagulant and hemorrhagic activities were markedly inhibited at 1:1 and 1:5 proportions with Myrsine guianensis and Jatropha curcas, respectively. Phospholipase and coagulant activities were inhibited with Zanthoxylum monogynum at 1:5 and 1:10 proportions, respectively.
Conclusions: The extracts analyzed inhibited the venoms from Bothrops alternatus and Bothrops moojeni due to the presence of molecules with possible antiophidic properties.
REFERENCES
Warrel DA. Snake bite. Lancet. 2010;375:77-88.
World Health Organization (WHO). Neglected Tropical Diseases: Snakebite [Lastupdatedon 2017 Apr 06; Last accessed on 2012 May 26]. Available from: http://www.who.int/neglected_diseases/diseases/snakebites/en/index.html
Brasil, Ministério da Saúde. Sistema de Informação de Agravos de Notificação. Casos de acidentes por serpentes. Brasil, Grandes Regiões e Unidades Federadas. 2000 a 2016 [cited 2017 Apr 6]. Available from: http://portalarquivos.saude.gov.br/images/pdf/2017/abril/28/1casos_Ofidismo_2000_2016.pdf
França FOS. Associação da venenemia e da gravidade em acidentes botrópicos no momento da admissão no Hospital Vital Brazil, do Instituto Butantan, SP, com variáveis epidemiológicas, clínicas e laboratoriais. Rev Soc Bras Med Trop. 1998;31:495-6.
Chijiwa T, So S, Hattori S, Yoshida A, Oda-Ueda N, Ohno M. Suppression of severe lesions, myonecrosis and hemorrhage, caused by Protobothropsflavoviridis venom with its serum proteins. Toxicon. 2013;76:197-05.
Mamede CCN, Sousa BB, Pereira DFC, Matias MS, Queiroz MR, Morais NCG, et al. Comparative analysis of local effects caused by Bothropsalternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon. 2011;117:37-45.
Burin SM, Menaldo DL, Sampaio SV, Frantz GG, Castro FA. An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int J Biol Macromol. 2018;109:664-71.
Queiroz MR, Sousa BB, Pereira DFC, Mamede CCN, Matias MS, Morais NCG, et al. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon. 2017;133:33-47.
Hatakeyama DM, Morais-Zani K, Serino-Silva C, Grego KF, Sant'anna SS, Fernandes W, et al. Examination of biochemical and biological activities of Bothropsjararaca (Serpentes: Viperidae; Wied-Neuwied 1824) snake venom after up to 54 years of storage. Toxicon. 2018;141:34-42.
Echeverría S, Leiguez E, Guijas C, Nascimento NG, Acosta O, Teixeira C, et al. Evaluation of pro-inflammatory events induced by Bothropsalternatus snake venom. Chem Biol Interact. 2018;281:24-31.
Melo LL, Mendes MM, Alves LM, Isabel TF, Vieira SAPB, Gimenes SNC, et al. Cross-reactivity and inhibition myotoxic effects induced by Bothrops snake venoms using specific polyclonal anti-BnSP7 antibodies. Biologicals. 2017;50:109-16.
Da Silva JO, Coppede JS, Fernandes VC, Sant`Ana CD, Ticli FK, Mazzi MV, et al. Antihemorrhagic, antinucleolytic and other antiophidian properties of the aqueous extract from Pentaclethramacroloba. J Ethnopharmacol. 2005;100:145-52.
Moccelini, SK. Estudo fitoquímico das cascas das raízes de Zanthoxylum rigidum Humb. & Bonpl. ex Willd (Rutaceae). Química Nova. 2009;32:131-133.
Santhosh MS, Hemshekhar M, Sunitha K, Thushara RM, Jnaneshwari S, Kempaeaju K, et al. Snake Venom Induced Local Toxicities: Plant Secondary Metabolites as an Auxiliary Therapy. Mini Rev Med Chem. 2013;13:106-23.
Izidoro LFM, Rodrigues VM, Ferro EV, Hamaguchi A, Giglio JR, Homsi-Bramdeburgo MI. Neutralization of some hematological and hemostatic alterations induced by neuwiedase, a metalloproteinase isolated from Bothrops neuwiedi pauloensis snake venom, by the aqueous extract from Casearia mariquitensis (Flaucortiaceae). Biochimie. 2003;669-675.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
De Haas GH, Postema NM. Purification and properties of phospholipase A2 from porcine pancreas. Biochem Biophys Acta.1968;159:103-17.
Assakura MT, Furtado MF, Mandelbau FR. Biochemical and biological differentiation of the venoms of the lancehead vipers (Bothropsmarajoensis and Bothrops moojeni). Comp Biochem Physiol. 1992;102:727-32.
Nikai T, Mori N, Kishida M. Isolation and biochemical characterization of hemorrhagic toxin from the venom of Crotalusatrox. Biochem Biophys Res Commun.1984;231:309-11.
Mendes MM, Vieira SAPB, Gomes MSR, Paula VF, Alcântara TM, Homsi-Brandeburgo MI, et al. Triacontyl p-coumarate: An inhibitor of snake venom metalloproteinases. Phytochemistry. 2013;86:72-82.
Tavares AV, Araújo KAM, Marques MRV, Vieira AA, Leite RS. The epidemiology of snakebite in the Rio Grande do Norte State, Northeastern Brazil. Rev Inst Med Trop São Paulo. 2017;59:1-10.
Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochem Biophys Acta. 2006;1761:1246-59.
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell’s viper venom: Characterization of piperine as active principle. J Ethnopharmacol. 2013;147:373-82.
Silva TP, Moura VM, Souza MCS, Santos VNC, Silva KAMM, Mendes MGG, et al. Connarus favosus Planch.: An inhibitor of the hemorrhagic activity of Bothrops atrox venom and a potential antioxidant and antibacterial agent. J Ethnopharmacol. 2016;183:166-75.
Salama WH, Abbdel-Aty AM, Fahmy AS. Rosemary leaves extract: Anti-snake action against Egyptian Cerastescerastes venom. J Tradit Complement Med. 2017;xxx:1-11.
Verrastro BR, Torres AM, Ricciardi G, Teibler P, Maruñak S, Barnaba C, et al. The effects of Cissampelos parreira extract on envenomation induced by Bothrops diporus snake venom. J Ethnopharmacol. 2018;212:36-42.
Ticli FK, Hagea LIS, Cambraia RS, Pereira PS, Magro AJ, Fontes MRM, et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum action potentiation and molecular interaction. Toxicon. 2005;46:318–27.
Ambikabothy J, Ibrahim H, Ambu S, Chakravarthi S, Awang K. Efficacy evaluations of Mimosa pudica tanninisolate (MPT) for its anti-ophidian properties. J Ethnopharmacol. 2011;137:257-62.
Fernandes FFA, Tomaz MA, El-Kik CZ, Monteiro-Machado M, Strauch MA, Cons BL, et al. Counteraction of Bothrops snake venoms by Combretum leprosum root extract and arjunolic acid. J Ethnopharmacol. 2014;155:552-62.
Raghavamma STV, Rao NR, Rao GD. Inhibitory potential of important phytochemicals from Pergularia daemia(Forks.) chiov., on snake venom (Naja naja). J. Genet Eng Biotechnol. 2016;14:211-7.
White J. Snake venoms and coagulopathy. Toxicon. 2005;45:951-67.
Costa JO, Fonseca KC, Garrote-Filho MS, Cunha CC, Freitas MV, Silva HS, et al. Structural and functional comparison of proteolytic enzymes from plant latex and snake venoms. Biochimie. 2010;92:1760-5.
Strauch MA, Tomaz MA, Monteiro-Machado M, Ricardo HD, Cons BL, Fernandes FFA, et al. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. J Ethnopharmacol. 2013;145:50-8.
Patiño AC, Benjumea DM, Pereañez JA. Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia(Zingiberaceae) extracts: Comparison of wild and in vitro propagated plants. J Ethnopharmacol. 2013;149:590- 6.
Baraldi PT, Magro AJ, Matioli FF, Marcussi S, Lemke N, Calderon LA, et al. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases. Biochimie. 2016;121:179-88.
Magalhaes A, Santos GB, Verdam MCS, Fraporti L, Malheiro A, Lima ES, et al. Inhibition of the inflammatory and coagulant action of Bothrops atrox venom by the plants species Marsypianthes chamaedrys. J Ethnopharmacol. 2011;134:82-8.
Moura VM, Souza LYA, Guimarães NC, Santos IGC, Almeida PDO, Oliveira RB, et al. The potential of aqueous extract of Beluccia dichotoma Cogn. (Melastomataceae) to inhibit the biological activities of Bothrops atrox venom: A comparison of specimens collected in the states of Pará and Amazonas, Brazil. J Ethnopharmacol. 2017;196:168-77.
Matsui T, Fujimura Y, Titan, K. Snake venom proteases affecting hemostasis and thrombosis. Biochem Biophys Acta. 2000;1477:146-56.
Hasan N, Azam NK, Ahmed N, Hirashima A. A randomized ethnomedicinal survey of snake bite treatment in south western parts of Bangladesh. J Tradit Complement Med. 2016;6:337-42.