2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Trends in bioenergy: from the metagenoma of habitats rich in sulfur to the purification of biogas
Veana F, González-Purata PY, Wong-Paz JE, Aguilar-Zárate P, Muñiz-Márquez DB
Language: Spanish
References: 66
Page: 1-11
PDF size: 539.60 Kb.
ABSTRACT
A large amount of wastes is generated by agro-industry and can be valorized to obtain useful products with higher
added value, thus reducing environmental impact. There are alternatives to valorize these wastes and the production
of bioenergy has been a great precedent, from the production of biodiesel, bioethanol and biogas that is possible by
the use of biomass. Biogas production by methanogenesis is an alternative for the generating biofuels and energy.
However, a problem arises during biogas production due to the presence of hydrogen sulfide (and other compounds),
which is toxic and can damage the biogas plant (up concentrations of 658 ppmv), increase SOx emissions and inhibit
the fermentation process of biogas production, so it is necessary to eliminate them. The biological removal method
of this compound is included, by oxidization through microorganisms. The objective of this review is to expose the
trends in the use of the microorganisms mentioned in environmental biotechnology, particularly their role in biogas
purification.
REFERENCES
Abatzoglou, N. & Boivin, S. (2009). A review of biogas purification processes. Biofuels, Bioproducts & Biorefining, 3, 42–71. https://doi.org/10.1002/bbb.117
Achinas, S., Achinas, V. & Euverink, G. J. W. (2017). A technological overview of biogas production from biowaste. Engineering, 3(3), 299–307. https://doi. org/10.1016/J.ENG.2017.03.002
Antonelli, J., Lindino, C. A., Rodrigues de Azevedo, J. C., Melegari de Souza, S. N., Cremonez, P. A. & Rossi, E. (2016). Biogas production by the anaerobic digestion of whey. Revista de Ciências Agrárias, 39(3), 463–467. https://doi.org/10.19084/RCA15087
Asif, M. & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413. https://doi.org/10.1016/j.rser.2005.12.004
Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P. & Lyczko, N. (2017). A review of biogas utilization, purification and upgrading technologies. Waste and Biomass Valorization, 8(2), 267–283. https://doi.org/10.1007/s12649-016-9826-4
Barbusiński, K. & Kalemba, K. (2016). Use of biological methods for removal of H2S from biogas in wastewater treatment plants– a review. Architecture Civil Engineering Environment, 9(1), 103–112.
Barrera, E. L., Spanjers, H., Dewulf, J., Romero, O. & Rosa, E. (2013). The sulfur chain in biogas production from sulfate-rich liquid substrates: A review on dynamic modeling with vinasse as model substrate. Journal of Chemical Technology and Biotechnology, 88(8), 1405– 1420. https://doi.org/10.1002/jctb.4071
Basurto, S. & Escalante, R. (2012). Impacto de la crisis en el sector agropecuario en México. ECONOMIÍAunam, 9(25), 51–73.
Caruso, M., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F., Altieri, G. & Genovese, F. (2019). Recent Updates on the Use of Agro-Food Waste for Biogas Production. Applied Sciences, 9(6), 1217. https://doi.org/10.3390/app9061217
Castillo-Rodríguez, F. (2005). Biotecnología Ambiental. Madrid, España: Tébar.
Castro, J. (2011). Perspectivas de la demanda energética global. Petrotecnia, 11(1), 54–70. Retrieved from http:// www.petrotecnia.com.ar/febrero2011/sin/Demanda.pdf
Chakravarty, G. (2016). Evaluation of fruit wastes as substrates for the production of biogas. Scholars Research Library Annals of Biological Research, 7(3), 25–28. Retrieved from http://scholarsresearchlibrary.com/archive.html
Chu, S. & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294– 303. https://doi.org/10.1038/nature11475
Cortés-López, N., Montor-Antonio, J., Olvera-Carranza, C., Peña-Castro, J. & Del Moral-Ventura, S. (2014). Metagenómica: una ventana de oportunidad a nuevos genes y genomas microbianos. Revista Iberoamericana de Ciencias, 1(7), 45–58. Retrieved from www.reibci.org
Cúcio, C., Overmars, L., Engelen, A. H. & Muyzer, G. (2018). Metagenomic Analysis Shows the Presence of Bacteria Related to Free-Living Forms of Sulfur-Oxidizing Chemolithoautotrophic Symbionts in the Rhizosphere of the Seagrass Zostera marina. Frontiers in Marine Science, 5(May), 1–15. https://doi.org/10.3389/fmars.2018.00171
Cury, R. K., Aguas, M. Y., Martínez, M. A., Olivero, V. R. & Chams, Ch. L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento Agroindustriales waste impact , management and exploitation. Revista Colombiana de Ciencia Animal, 9, 122–132. https://doi. org/10.24188/recia.v9.nS.2017.530
D’Auria, G., Artacho, A., Rojas, R. A., Bautista, J. S., Méndez, R., Gamboa, M. T., Gamboa, J. R. & Gómez- Cruz, R. (2018). Metagenomics of bacterial diversity in villa Luz caves with sulfur water springs. Genes, 9(1), 1–13. https://doi.org/10.3390/genes9010055
Díaz-Rodríguez, Y., Acosta-Díaz, S., Barrios-San Martín, Y., Pascual Mustelier-Pérez, S., Contrera-Aviléz, R. & González-Hernández, F. (2017). Caracterización de un consorcio bacteriano sulfooxidante aislado de un sistema de Biofiltración de gas natural. In Revista CENIC Ciencias Biológicas, (Vol. 48). Retrieved from https:// www.redalyc.org/pdf/1812/181250961005.pdf
Diep, N. Q., Sakanishi, K., Nakagoshi, N., Fujimoto, S., Minowa, T. & Tran, X. D. (2012). Biorefinery: concepts, current status, and delevopment trends. International Journal of Biomass & Renewables, 2(1), 1–8.
Elaiyaraju, P. & Partha, N. (2016). Studies on biogas production by anaerobic process using agroindustrial wastes. Research in Agricultural Engineering, 62(2), 73– 82. https://doi.org/10.17221/65/2013-rae
ESAMUR. (2011). Del Análisis del Biogás a la Planta de Generación (MWM Energy. Eficiency. Environment, ed.). Retrieved from http://www.esamur.com/public/file/ ponencia136.compressed.pdf
Escalante, S. R. I. & Catalán, H. (2008). Situación actual del sector agropecuario en México: perspectivas y retos. Economía Informa, 350, 7–25.
Fonseca, A., Ishoey, T., Espinoza, C., Pérez-Pantoja, D., Manghisi, A., Morabito, M., Salas-Burgos, A. & Gallardo, V. A. (2017). Genomic features of “Candidatus Venteria ishoeyi”, a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile. PLoS ONE, 12(12), e0188371. https://doi.org/10.1371/journal.pone.0188371
Forster-Carneiro, T., Isaac, R., Pérez, M., & Schvartz, C. (2012). Anaerobic Digestion: pretreatments of substrates. In A. Mudhoo (Ed.), Biogas Production: pretreatment methods in anaerobic digestion (pp. 1–20). New Jersey: John Wiley & Sons.
Gholipour, S., Mehrkesh, P., Azin, E., Nouri, H., Rouhollahi, A. A. & Moghimi, H. (2018). Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfuroxidizing fungi. Journal of Environmental Chemical Engineering, 6(2), 2762–2767. https://doi.org/10.1016/j. jece.2018.04.026
Gomez, C. D. C. (2013). Biogas as an energy option: an overview. In A. Wellinger, J. Murphy & D. Baxter (Eds.), The Biogas Handbook: Science, production and applications (pp. 1–16). Cambridge: Woodhead Publishing.
Grande-Tovar, C. D. (2016). Valorización biotecnológica de residuos agrícolas y agroindustriales. Cali: Bonaventuriana.
Gros, O. (2017). First description of a new uncultured epsilon sulfur bacterium colonizing marine mangrove sediment in the Caribbean: Thiovulum sp. strain karukerense. FEMS Microbiology Letters, 364, 1–8. https://doi.org/10.1093/ femsle/fnx172
Guo, M., Song, W. & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725. https://doi. org/https://doi.org/10.1016/j.rser.2014.10.013
Hossain, A. B. M. S. & Mekhled, M. A. (2010). Biodiesel fuel production from waste canola cooking oil as sustainable energy and environmental recycling process. Australian Journal of Crop Science, 4(7), 543–549.
Hublin, A., Schneider, D. R. & Dzodan, J. (2014). Utilization of biogas produced by anaerobic digestion of agroindustrial waste: Energy, economic and environmental effects. Waste Management and Research, 32(7), 626– 633. https://doi.org/10.1177/0734242X14539789
Ingale, S., Joshi, S. J. & Gupte, A. (2014). Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892.
Kambam, V., Soundararajan, D., Raghupati, S. & Mathivanan, S. (2015). Comparative Study of Sulphur Oxidizing Bacteria Isolated from Different Comparative Study of Sulphur Oxidizing Bacteria Isolated from Different Wastes. International Journal of Extensive Research, 12, 1–7.
Llaneza, H., Moris, M. A., González Azpíroz, L. & González, E. (2010). Caracterización, Purificación y Control del Biogás. In PSE PROBIOGAS (Ed.), Estudio de la Viabilidad de Sistemas de Purificación y Aprovechamiento de Biogás (p. 28). Retrieved from http://213.229.136.11/ bases/ainia_probiogas.nsf/0/7559B244B63EB155C1257 53F0058E255/$FILE/Cap1.pdf
Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. (2009). Brock: Biología de los microorganismos. Madrid: Pearson Education.
Mejías-Brizuela, N., Orozco-Guillén, E. & Galáan- Hernández, N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales, 2(6), 27–41. Retrieved from www.ecorfan. org/spain
Moreno-Andrade, I., Moreno, G. & Quijano, G. (2019). Theoretical framework for the estimation of H2S concentration in biogas produced from complex sulfurrich substrates. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04846-3
Mussatto, S. I., Ballesteros, L. F., Martins, S. L. F. & Teixeira, J. A. (2012). Use of agro-industrial wastes in solidstate fermentation processes. In S. Kuan-Yeow & G. Xinxin (Eds.), Industrial Waste (pp. 121–140). Croatia: InTechOpen.
Naz, S., Ahmad, N., Akhtar, J., Ahmad, N. M., Ali, A. & Zia, M. (2016). Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnology, 10(6) 395-399. https://doi.org/10.1049/iet-nbt.2015.0116.
Ortega-Viera, L., Crespo-Artigas, A., Gandón-Hernández, J., Rodríguez-Muñoz, S., Fernández-Santana, E. & Ameneiros-Martínez, J. M. (2017). Modelo fenomenológico que describe el proceso de purificación de biogás empleando membranas de zeolita natural. Revista Mexicana de Ingeniería Química, 16(2), 531–539.
Ortega, V. L., Rodríguez, M. S., Fernández, S. E. & Bárcenas, P. L. (2015). Principales métodos para la desulfuración del biogás. Ingeniería Hidráulica y Ambiental, 36(1), 45–56.
Padilla de la Rosa, J. D., Ruiz-Palomino, P., Arriola-Guevara, E., García-Fajardo, J., Sandoval, G. & Guatemala- Morales, G. M. (2018). A Green process for the extraction and purification of hesperidin from mexican lime peel (Citrus aurantifolia Swingle) that is extendible to the citrus genus. Processes, 6(266), 1–13.
Palma-López, D. J., Zavala-Cruz, J., Cámara-Reyna, J. C., Ruiz-Maldonado, E. & Salgado-García, S. (2016). Uso de residuos de la agroindustria de la caña de azúcar (Saccharum spp.) para elaborar abonos orgánicos. Agroproductividad, 9(7), 29–34.
Pinto, L. & Quipuzco, L. (2015). Aprovechamiento de aguas residuales domésticas para producción de biogás y biol, mediante digestores de carga diaria. Anales Científicos, 76(1), 87–93. https://doi.org/10.21704/ac.v76i1.768
Ponce, E. (2016). Métodos sencillos en obtención de biogás rural y su conversión en electricidad. IDECIA (Chile), 34(5), 75–79. https://doi.org/10.4067/s0718- 34292016005000011
Quijano, G., Figueroa-González, I. & Buitrón, G. (2018). Fully aerobic two-step desulfurization process for purification of highly H2S-laden biogas. Journal of Chemical Technology and Biotechnology, 93(12), 3553– 3561. https://doi.org/10.1002/jctb.5732
Quirino, C., Duana, A., Hernández, M. & García, G. (2016). Desarrollo económico del sector agropecuario en México a 20 años de la firma TLCAN. Revista TECSISTECATL, 8(20), 1–20.
Ramaraj, R. & Dussadee, N. (2015). Biological purification processes for biogas using algae cultures: a review. International Journal of Sustainable and Green Energy, 4(1), 20–32. https://doi.org/10.11648/j. ijrse.s.2015040101.14
Rasool, U. & Hemalatha, S. (2016). A review on bioenergy and biofuels: sources and their production. Brazilian Journal of Biological Sciences, 3(5), 3. https://doi.org/10.21472/ bjbs.030501
Rawat, R. & Rawat, S. (2015). Colorless sulfur oxidizing bacteria from diverse habitats. Advances in Applied Science Research, 6(4), 230–235.
Reyes, A. E. A. (2017). Generación de biogás mediante el proceso de digestión anaerobia, a partir del aprovechamiento de sustratos orgánicos. Revista Científica de FAREM-Estelí. Medio Ambiente, Tecnología y Desarrollo Humano, 6(24), 60–81.
Rossmassler, K., Hanson, T. & Campbell, B. (2016). Diverse sulfur metabolisms from two subterranean sulfidic spring systems. FEMS Microbiology Letters, 363(16), fnw162(1- 8). https://doi.org/10.1093/femsle/fnw162.
Rubiano-Labrador, C., Hurtado, A. H. & Salamanca, J. I. (2018). Búsqueda de bacterias oxidadoras de azufre para su potencial uso en la producción de biogás de alta pureza. Revista de Investigación Agraria y Ambiental, 9(2), 295–304.
Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K. & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25, 488–500.
San-Valero, P., Penya-roja, J. M., Javier Álvarez-Hornos, F., Buitrón, G., Gabaldón, C. & Quijano, G. (2019). Fully aerobic bioscrubber for the desulfurization of H2S-rich biogas. Fuel, 241, 884–891. https://doi.org/10.1016/j. fuel.2018.12.098
Sánchez-Aldana, D., Aguilar, C. N., Nevarez-Moorillon, G. V., & Esquivel-Contreras, J. C. (2013). Comparative extraction of pectin and polyphenols from mexican lime pomace and bagasse. American Journal of Agricultural and Biological Science, 8(4), 309–322.
Sarabia-Méndez, M., Laines-Canepa, J., Sosa-Oliver, J. & Escalante-Espinosa, E. (2017). Producción de biogás mediante codigestión anaerobia de excretas de borrego y rumen adicionadas con lodos procedentes de una planta de aguas residuales. Revista Internacional de Contaminación Ambiental, 33(1), 109–116. https://doi. org/10.20937/RICA.2017.33.01.10
Sharrar, A. M., Flood, B. E., Bailey, J. V, Jones, D. S., Biddanda, B. A., Ruberg, S. A.,Marcus, D. N. & Dick, G. J.(2017). Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron basin. Frontiers in Microbiology, 8, Art 791. 1-15. https://doi.org/10.3389/ fmicb.2017.00791.
Singh, R.S. & Walia, A. (2016). Biofuels Historical Perspectives and Public opinions. In RA Singh, A. Pandey, & E. Gnansounou (Eds.), Biofuels, Production and Future Perspective (1st editio, pp. 3–23). CRC Press.
Solera del Rio (2014). De Residuo a Recurso. El Camino hacia la Sostenibilidad. Ediciones Mundi-Prensa, Madrid, España.
Svensson, M. (2013). Biomethane for transport applications. In A. Wellinger, J. Murphy, & D. Baxter (Eds.), The Biogas Handbook: Science, production and applications (pp. 428–443). Cambridge: Woodhead Publishing.
Tapia-Gómez, A., Laines-Canepa, J. & Sosa-Olivier, J. (2017). Codigestión de residuos sólidos orgánicos generados en las cafeterías de la División Académica de Ciencias Biológicas. Journal of Energy, Engineering Optimization and Sustainability, 1(1), 71–82. https://doi.org/10.19136/ jeeos.a1n1.1725
Tourna, M., Maclean, P., Condron, L., O’Callaghan, M. & Wakelin, S. A. (2014). Links between sulphur oxidation and sulphur-oxidizing bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 88(3), 538–549. https:// doi.org/10.1111/1574-6941.12323
Vargas-Corredor, Y. K. & Pérez-Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72.
Vidyalakshmi, R., Paranthaman, R. & Bhakyaraj, R. (2009). Sulphur oxidizing bacteria and pulse nutrition- a review. World Journal of Agricultural Sciences, 5(3), 270–278.
Yepes, S. M., Naranjo, L. J. M. & Sánchez, F. O. (2008). Valorización de residuos agroindustriales- frutas- en Medellín y el sur del Valle del Aburrá, Colombia. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4422–4431.