2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Identification of phenolic compounds in almond (Prunus dulcis) and pecan (Carya illinoinensis) extracts by liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)
de la Rosa LA, Álvarez-Parrilla E, García-Fajardo JA
Language: Spanish
References: 25
Page: 1-13
PDF size: 823.93 Kb.
ABSTRACT
Almonds and pecans are considered functional foods because their regular intake provides protection against several
chronic-degenerative diseases. Phenolic compounds are some of the most bioactive components of these tree nuts; yet,
their identification and characterization is regularly viewed as an analytical challenge. The aim of the present work
was to characterize the phenolic compound profile of acetone and methanol extracts of almond and pecan nut, by using
HPLC coupled to tandem mass spectrometry (MS/MS). First, high resolution MS (Q-TOF) was used to identify phenolic
compounds in the extracts: 29 compounds were detected in almond (22 in acetone extract, 24 in ethanol extract) and 43
in pecan (39 in acetone extract, 37 in ethanol extract). Identity of 6 almond compounds and 20 pecan compounds was
confirmed through analysis of their MS/MS fragmentation patterns. Phenolic profiles were different between pecan and
almond but similar between extraction solvents for a same tree nut species. Flavonols and flavanones were the major
types of phenolic compounds in almond, while pecan phenolics were mostly hydrolysable (ellagitannins acid ellagic acid
derivatives) and condensed tannins (upto tetramers). Three ellagitannins are described for the first time in pecan.
REFERENCES
Abu-Reidah, I.M., (2013). Characterization of phenolic compounds in highly-consumed vegetable matrice by using advanced analytical techniques (Caracterización de compuestos fenólicos en matrices vegetales mediante técnicas analíticas avanzadas). Doctoral thesis, Granada: Editorial de la Universidad de Granada.
Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D. & Antonio Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem., 166, 179–191. DOI: 10.1016/j. foodchem.2014.06.011
Alasalvar, C. & Shahidi, F. (2008). Tree nuts: Composition, phytochemicals, and health effects. Boca Raton: CRC Press.
Álvarez-Parrilla, E., Urrea-López, R. & de la Rosa, L. A. (2018). Bioactive components and health effects of pecan nuts and their by-products: a review. J. Food Bioact., 1, 56-92. DOI: 10.31665/JFB.2018.1127
Aune, D., Keum, N., Giovannucci, E., Fadnes, L. T., Boffetta, P., Greenwood, D. C., Tonstad, S., Vatten, L. J., Riboli, E. & Norat, T. (2016). Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Medicine, 14:207, 1-14. DOI: 10.1186/s12916-016-0730-3
Barry, K. M., Davies, N. W. & Mohamed, C. L. (2001). Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by High Performance Liquid Chromatography–Electrospray Ionisation Mass Spectrometry. Phytochem. Anal., 12, 120–127. DOI: 10.1002/pca.548
Boulekbache-Makhlouf, L., Meudec, E., Chibane, M., Mazaruic, J. -P., Slimani, S., Henry, M., Cheynier, V. & Madani, K. (2010). Analysis by High-Performance Liquid Chromatography Diode Array Detection Mass Spectrometry of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria. J. Agric. Food Chem,. 58, 12615–12624. DOI: 10.1021/jf1029509
Chang, S. K., Alasalvar, C., Bolling, B. W. & Shahidi, F. (2016). Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. J. Funct. Foods, 26, 88–122. DOI: 10.1016/j.jff.2016.06.029
de la Rosa, L. A., Álvarez-Parrilla, E. & Shahidi, F. (2011) Phenolic compounds and antioxidant activity of kernels and shells of mexican pecan (Carya illinoinensis). J. Agric. Food Chem., 59, 152-162. DOI: 10.1021/jf1034306
Fabre, N., Rustan, I., Hoffmann, E. & Quetin-Leclercq, J. (2001). Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom., 12, 707-715. DOI: 10.1016/S1044- 0305(01)00226-4
Gong, Y. & Pegg, R. B. (2017). Separation of ellagitannin-rich phenolics from U.S. pecans and chinese hickory nuts using Fused-Core HPLC columns and their characterization. J. Agric. Food Chem., 65, 5810−5820. DOI: 10.1021/acs. jafc.7b01597
Grace, M. H., Warlick, C. C., Neff, S. A. & Lila, M. A. (2014). Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem., 158, 229–238. DOI: 10.1016/j.foodchem.2014.02.117
Hager, T. J., Howard, L. R., Liyanage, R., Lay, J. O. & Prior, R. L. (2008). Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOFMS. J. Agric. Food Chem., 56, 661–669. DOI: 10.1021/ jf071990b
Justesen, U. (2000). Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A., 902, 369-379. DOI: 10.1016/S0021-9673(00)00861-X
Kool, M. M., Comeskey, D. J., Cooney, J. M. & McGhie, T. K. (2010). Structural identification of the main ellagitannins of a boysenberry (Rubus loganbaccus x baileyanus Britt.) extract by LC–ESI-MS/MS, MALDI-TOF-MS and NMR spectroscopy. Food Chem., 119, 1535–1543. DOI: 10.1016/j.foodchem.2009.09.039
Lamuel-Raventos, R. M. & St. Onge, M. –P. (2017). Prebiotic nut compounds and human microbiota. Crit. Rev. Food Sci. Nutr., 57, 3154–3163. DOI: 10.1080/10408398.2015.1096763
Lee, J. −H., Johnson, O. V. & Talcott, S. T. (2005). Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J. Agric. Food Chem., 53, 6003-6010. DOI: 10.1021/jf050468r
Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolomé, B. & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem., 55, 8498-8507. DOI: 10.1021/jf071780z
Moqbel, H., Hawary, S. S. E. D. E., Sokkar, N. M., El- Naggar, E. M. B., Boghdady, N. E. & Halawany, A. M. E. (2018). HPLC-ESI-MS/MS characterization of phenolics in Prunus amygdalus, cultivar “umm alfahm” and its antioxidant and hepatoprotective activity. J. Food Meas. Charact., 12, 808-819. DOI: 10.1007/s11694-017-9695-
Motilva, M. –J., Serra, A. & Macià, A. (2013). Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A., 1292, 66-82. DOI: 10.1016/j. chroma.2013.01.012
Mullen, W., Yokota, T., Lean, M. E. J. & Crozier, A. (2003). Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochem., 64, 617–624. DOI: 10.1016/S0031-9422(03)00281-4
Robbins, K. S., Ma, Y., Wells, M. L., Greenspan, P. & Pegg, R. B. (2014). Separation and characterization of phenolic compounds from U.S. pecans by Liquid Chromatography− Tandem Mass Spectrometry. J. Agric. Food Chem., 62, 4332−4341. DOI: 10.1021/jf500909h
Sandhu, A. K. & Gu, L. (2010). Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine grapes) as determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 58, 4681–4692. DOI: 10.1021/jf904211q
Sauceda, A. E. Q., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Wall-Medrano, A., de la Rosa, L. A., González- Aguilar, G. A. & Álvarez-Parrilla, E. (2018). Biological Actions of Phenolic Compounds. En: Yahia, E. M. (Ed.) Fruit and Vegetable Phytochemicals: Chemistry and Human Health (pp. 286–307). Hoboken: John Wiley and Sons Ltd.
Torres-Aguirre, G. A., Muñoz-Bernal, O. A., Álvarez-Parrilla, E., Núñez-Gastélum, J. A., Wall-Medrano, A., Sáyago- Ayerdi, S. G. & de la Rosa, L. A. (2018). Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. TIP Revista Especializada en Ciencias Químico-Biológicas, 21, 103-115. DOI: 10.22201/fesz.23958723e.2018.2.4