2019, Number 1
Chitosan and Opuntia ficus-indica mucilage as the base of a polymeric edible film for the protection of tomatoes against Rhizopus stolonifer
Language: English
References: 42
Page: 1-9
PDF size: 1274.29 Kb.
ABSTRACT
Chitosan (CS) is a versatile raw material for the production of fibers and biomaterials. As antifungal compound, it has an interesting mechanism related to interactions with the cell membranes, being effective against various fungi. Likewise, Opuntia mucilage (OM) is a polymeric matrix with interesting applications in the agricultural and food field. An edible film based on these materials was designed in this work, as an alternative to defend crops against fungi infections. Various tests of homogeneity and resistance were performed by varying the concentration of chitosan, glycerol and mucilage to select the best composition for the film. Subsequently, structural and rheological studies were carried out as elements for the characterization of the chosen formulation. Finally, in vitro and in situ tests were performed to evaluate the antifungal potential in the protecting the crops of interest. Based on the qualitative and physicochemical characterization, it was determined that the film with better integrity in its structure was obtained at concentrations of 3% glycerol, 2% chitosan and 20% mucilage. The resulting film was homogenous, flexible, luminous, slightly dark, with cumulative viscosity, that means that total viscosity is the result of each component viscosity. The CS-OM film demonstrated a strong antifungal effect against Rhizopus stolonifer in vitro and in situ conditions and increased the shelf-life of tomatoes. The results showed the potential of the use of this biodegradable film in protecting the crops of interest, making it an attractive polymeric product for field application.REFERENCES
Aguilar-Méndez, M. A., Martín-Martínez, E. S., Tomás, S. A., Cruz-Orea, A. & Jaime-Fonseca, M. R. (2008). Gelatine–starch films: Physicochemical properties and their application in extending the post-harvest shelf life of avocado (Persea americana). Journal of the Science of Food and Agriculture, 88(2), 185-193. DOI:10.1002/ jsfa.3068.
Ávila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R. & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology,153(1), 66-72. DOI:https://doi. org/10.1016/j.ijfoodmicro.2011.10.017.
de Albuquerque, J. G., de Souza Aquino, J., de Albuquerque, J. G., de Farias, T. G. S., Escalona-Buendía, H. B., Bosquez-Molina, E. & Azoubel, P. M. (2018). Consumer perception and use of nopal (Opuntia ficus-indica): A cross-cultural study between Mexico and Brazil. Food Research International, 124(1),101-108. DOI:https://doi. org/10.1016/j.foodres.2018.08.036.
Del-Valle, V., Hernández-Muñoz, P., Guarda, A. & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91(4), 751-756. DOI:https://doi.org/10.1016/j. foodchem.2004.07.002.
Domínguez-Martinez, B. M., Martínez-Flores, H. E., Berrios, J. D. J., Otoni, C. G., Wood, D. F. & Velázquez, G. (2017). Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia mucilage. Journal of Polymers and the Environment, 25(3), 683- 691. DOI:10.1007/s10924-016-0851-y.
Dos Santos, N. S. T., Athayde Aguiar, A. J. A., de Oliveira, C. E. V., Veríssimo de Sales, C., de Melo e Silva, S., Sousa da Silva, R., Montenegro Stamford, T.C. & de Souza, E. L. (2012). Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiology, 32(2), 345-353. DOI:https://doi. org/10.1016/j.fm.2012.07.014.
García-Rincón, J., Vega-Pérez, J., Guerra-Sánchez, M. G., Hernández-Lauzardo, A. N., Peña-Díaz, A. & Velázquez-Del Valle, M. G. (2010). Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pesticide Biochemistry and Physiology, 97(3), 275-278. DOI:https://doi. org/10.1016/j.pestbp.2010.03.008.
Guadarrama-Lezama, A. Y., Castaño, J., Velázquez, G., Carrillo-Navas, H. & Álvarez-Ramírez, J. (2018). Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. Journal of Food Science and Technology, 55(9), 3739- 3748. DOI:10.1007/s13197-018-3304-x.
Guerra-Sánchez, M. G., Vega-Pérez, J., Velázquez-del Valle, M. G., & Hernández-Lauzardo, A. N. (2009). Antifungal activity and release of compounds on Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. by effect of chitosan with different molecular weights. Pesticide Biochemistry and Physiology, 93(1), 18-22. DOI:https://doi.org/10.1016/j. pestbp.2008.09.001.
Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquezdel Valle, M. G., Méndez-Montealvo, M. G., Sánchez- Rivera, M. M. & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73(4), 541-547. DOI:https://doi.org/10.1016/j.carbpol.2007.12.020.
Hernández-Lauzardo, A. N., Vega-Pérez, J., Velázquezdel Valle, M. G., Sánchez, N. S., Peña, A. & Guerra- Sánchez, G. (2011). Changes in the Functionality of Plasma Membrane of Rhizopus stolonifer by Addition of Chitosan. Journal of Phytopathology, 159(7-8), 563-568. DOI:10.1111/j.1439-0434.2011.01802.x.
León-Martínez, F. M., Cano-Barrita, P. F. d. J., Lagunez- Rivera, L., & Medina-Torres, L. (2014). Study of nopal mucilage and marine brown algae extract as viscosityenhancing admixtures for cement based materials. Construction and Building Materials, 53, 190-202. DOI:https://doi.org/10.1016/j.conbuildmat.2013.11.068.
Liu, J., Sui, Y., Wisniewski, M., Xie, Z., Liu, Y., You, Y.,Zhang, X., Sun, Z., Li, W., Li, Y. & Wang, Q. (2018). The impact of the postharvest environment on the viability and virulence of decay fungi. Critical Reviews in Food Science and Nutrition, 58(10), 1681-1687. DOI: 10.1080/10408398.2017.1279122.
Maqbool, M., Ali, A., Alderson, P. G., Zahid, N. & Siddiqui, Y. (2011). Effect of a Novel Edible Composite Coating Based on Gum Arabic and Chitosan on Biochemical and Physiological Responses of Banana Fruits during Cold Storage. Journal of Agricultural and Food Chemistry, 59(10), 5474-5482. DOI:10.1021/jf200623m.
Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra- Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez- Félix, F., Castillo-Ortega, M.M., Yépiz-Gómez, M.S. & Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82(2), 305-315. DOI:https://doi.org/10.1016/j.carbpol.2010.04.069.
Mayek-Pérez, N., Pedroza-Flores, J. A., Villarreal-García, L. A. & Valdés-Lozano, C. G. (1995). Factores genéticos y ambientales relacionados con la dinámica temporal y efecto de las enfermedades en frijol (Phaseolus vulgaris L.) en Marín, Nuevo León, México. Revista Mexicana de Fitopatología, 13(1), 1-9.
Olicón-Hernández, D. R., Camacho-Morales, R. L., Pozo, C., González-López, J. & Aranda, E. (2019). Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Science of The Total Environment, 662, 607-614. DOI:https://doi.org/10.1016/j.scitotenv.2019.01.248.
Olicón-Hernández, D. R., Hernández-Lauzardo, A. N., Pardo, J. P., Peña, A., Velázquez-del Valle, M. G. & Guerra-Sánchez, G. (2015). Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. International Journal of Biological Macromolecules, 79, 654-660. DOI:https://doi. org/10.1016/j.ijbiomac.2015.05.057.
31.Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A. & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry, 187, 174-181. DOI:https://doi.org/10.1016/j.foodchem.2015.04.090.
Peris-Vicente, J., Marzo-Mas, A., Roca-Genovés, P., Carda- Broch, S. & Esteve-Romero, J. (2016). Use of micellar liquid chromatography for rapid monitoring of fungicides post harvest applied to citrus wastewater. Journal of Environmental Sciences, 42, 284-292. DOI:https://doi. org/10.1016/j.jes.2015.12.012.
Treviño-Garza, M. Z., García, S., Heredia, N., Alanís-Guzmán, M. G. & Arévalo-Niño, K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology, 128, 63-75. DOI:https://doi.org/10.1016/j. postharvbio.2017.01.007.
Valadez-Carmona, L., Cortez-García, R. M., Plazola-Jacinto, C. P., Necoechea-Mondragón, H. & Ortiz-Moreno, A. (2016). Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.). Journal of Food Science and Technology, 53(9), 3495- 3501. DOI:10.1007/s13197-016-2324-7.
Zambrano-Zaragoza, M., González-Reza, R., Mendoza- Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T., Mendoza-Elvira, S. & Quintanar-Guerrero, D. (2018). Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences, 19(3), 705. DOI:10.3390/ijms19030705.