2019, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Acute toxicity of N-(phosphonomethyl) glycine herbicide on planktonic microorganisms Artemia franciscana and Microcystis aeruginosa
Solís-González G, Cortés-Téllez AA, Téllez-Pérez ZI, Bartolomé-Camacho MC
Language: Spanish
References: 28
Page: 1-8
PDF size: 786.80 Kb.
ABSTRACT
Continuous exposure to N-(phosphonomethyl) glycine (glyphosate) produces alterations on aquatic ecosystems,
depending on the species or organism, concentration and exposure time. The aim of this research was to evaluate the
median lethal concentration (LC
50(24)) in Artemia franciscana, as well as the median population inhibitory concentration
(IC
50) and the coefficient of form (CF) in the cyanobacterium Microcystis aeruginosa in aquatic ecosystems. The
results for A. franciscana were an LC
50(24) 0.31 mg L
-1, and on M. aeruginosa of an IC
50(72) 53.95 mg L-1. About
the study of the coefficient of form, in the control cells of M. aeruginosa it resulted in a CF≈1, while exposed to
72h-NOEC (No Observable Effect Concentration) was 2.95 mg L-1. The IC50(72) was 53.95 mg L-1 indicating that the
cells remain spherical, however, there are significant changes in their volume and the cell surface exposed to IC50(72) of
7.69 ± 1.69 µm3 with 33% volume reduction compared to the control cell, which reflects the ecotoxicological dangers
of this herbicide. Exposure to glyphosate resulted as category I (highly toxic) in A. franciscana and category II (toxic)
in M. aeruginosa, according to the classification of the United States Environmental Protection Agency (U.S. EPA).
REFERENCES
Aparicio, V. & Costa, J. L. (2013). Soil quality indicators under continuous copping systems in the Argentinean Pampas. Soil & Tillage Research, 96, 155-165. DOI: 10.3232/SJSS.2015.V5.N3.04.
Barrionuevo, R. & Marcial, R. (2006). Ecología trófica de la fauna acuática en el manglar de San Pedro, Sechura. Universalia, 11, 44-56.
Begon, M., Harper, J. L. & Townsend, C. R. (1999). Ecología: individuos, poblaciones y comunidades (No. 04; QH541, B43y 1999). Barcelona: Omega. DOI: 10.1016/j. tree.2008.07.011.
Carlisle, S. M. & Trevors, J. T. (1986). Glyphosate in the environment. Water, Air, and Soil Pollution, 29, 409. DOI: 10.1007/BF00279485.
COFEPRIS (2009). Catálogo de Plaguicidas. http://www. cofepris. gob.mx/wb/cfp/catalogo_de_plaguicidas (Página visitada el 12-11-2018).
Cronberg, G. & Annadotter, H. (2006). Manual of aquatic cyanobacteria: A photo guide and a synopsis of their toxicology. Lund: Institute of Ecology/Limnology.
D’Agostino, R. & Pearson, E.S., (1973). Tests for Departure from Normality. Empirical Results for the Distributions of b2 and √ b1. Biometrika, 60, 613–622. DOI: 10.2307/2335012.
Eslava, P., Ramírez, W. & Rondón, I. (2007). Sobre los efectos del glifosato y sus mezclas: impacto en peces nativos. Instituto de Acuicultura de los Llanos. Instituto de Investigaciones de la Orinoquia Colombiana. 34-43.
Goldsborough, L.G. & Beck, A.E. (1989). Rapid dissipation of glyphosate in small forest ponds. Archives of Environmental Contamination and Toxicology, 18(4), 537-544. DOI: 10.1007/BF01055020.
Hillebrand, H., Dürselen, C. L., Kirschtel, D., Pollingher, U. & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403- 424. DOI: 10.1046/j.1529-8817.1999.3520403.x.
Jaramillo, F., Meléndez, M.E. & Aldana, M.L. (2009). Toxicología de los Plaguicidas. En Toxicología Ambiental. 270. Textos Universitarios. Universidad Autónoma de Aguascalientes - Universidad de Guadalajara, México.
Lipok, J., Studnik, H. & Gruyaert, S. (2010). The toxicity of Roundup® 360 SL formulation and its main constituents: Glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicology and Environmental Safet, 73, 1681-1688. DOI: 10.1016/j.ecoenv.2010.08.017.
López-Rodas, V., Flores-Moya, A., Maneiro, E., Perdigones, N., Marva, F., García, M. E. & Costas, E. (2007). Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evolutionary Ecology, 21, 535-547. DOI: 10.1007/s10682-006-9134-8.
Mann, R.M. & Bidwell, J.R. (1999). The toxicity of glyphosate and several glyphosate formulations to four species of southwestern australian frogs. Archives of Environmental Contamination and Toxicology, 36(2), 193-199. DOI: 10.1007/s002449900460.
Mesnage, R., Defarge, Ni., Vendômois, J. & Séralini, G.- E. (2015). Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food and Chemical Toxicology, 84, 133-153.DOI: 10.1016/j. fct.2015.08.012.
Myers, J.P., Zoeller, R.T. & Vom Saal, F.S. (2016). A clash of old and new scientific concepts in toxicity, with important implications for public health. Environ Health Perspect, 117(11), 1652–16555. DOI: 10.1289%2Fehp.0900887.
Persoone, G., Van de Vel, A., Van Steertegem, M. & De Nayer, B. (1989). Predictive value of laboratory tests with aquatic invertebrates: influence of experimental conditions. Aquatic Toxicology, 14(2), 149-167. DOI:10.1016/0166445X (89)90025-8.
Qiu, H., Geng, J., Ren, H., Xia, X., Wang, X. & Yu, Y. (2013). Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation. Journal of Hazardous Materials, Vol. 248-249, 172-176. DOI: 10.1016/j.jhazmat.2012.12.033.
Renau-Piqueras, J., Gómez-Perretta, C., Guerri, C. & Sanchis, R. (1985). Qualitative and quantitative ultrastructural alterations in hepatocytes of rats prenatally exposed to ethanol with special reference to mitochondria, golgi apparatus and peroxisomes. Virchows Archiv., 405, 237– 251. DOI: 10.1007/BF00704375.
Reno, U., Gutierrez, M. F., Regalado, L. & Gagneten, A. M. (2014). The impact of Eskoba®, a Glyphosate Formulation, on the Freshwater Plankton Community. Water Environment Research, 86, 2294. DOI: 10.2175/10 6143014X13896437493580.
Sánchez, L. & Neira, A. (2006). Bioensayo General de la Letalidad de Artemia salina, a las Fracciones del Extracto Etanólico de Psidium guajava. L y Psidium guineense. Cultura Científica, 3(3), 40-45.
Sun, J. & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of plankton research, 25 (11), 1331-1346. DOI: 10.1093/plankt/fbg096.
Tsui, M. T. K. & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52, 1189-1197. DOI: 10.1016/ S0045-6535(03)00306-0.
van den Hoek, C., Mann, D.G. & Jahns, D.M. (1995). Algae. An Introduction to Phycology.: Cambridge University. European journal of Phycology, 32(2), 203-205. DOI: 10.1017/S096702629621100X.
Vera, M., Lagomarsino, L., Sylvester, M., Pérez, G., Zagarese, H. & Ferrano, M. (2014). New evidences of Roundup (glyphosate formulation) impact on the periphyton community in the water quality of freshwater ecosystems. Ecotoxicology, 19(4), 710-721. DOI: 10.1007/s10646- 009-0446-7.
Wang, C., Lin, X., Li, L. & Lin, S. (2016). Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate. PLoS ONE, 11(3), 1-20. DOI: 10.1371/ journal.pone.0151633.
WHO. (1994). Glyphosate. Environmental Health Criteria, No. 159. Geneva: World Health Organization, USA. DOI: 10.1002/food.19960400341.
Williams, G.M., Kroesb, R. & Munro, I.C. (2000). Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117-165. DOI: 10.1006/rtph.1999.1371.