2019, Number 5
<< Back
Salud Mental 2019; 42 (5)
Effect of postictal process in motor deficit and monoaminergic concentration in hippocampus, cerebellum, and cortex
Avila-Luna A, Bueno-Nava A, Cortes-Altamirano JL, Reyes-Long S, Bandala C, Alfaro-Rodríguez A
Language: English
References: 76
Page: 251-256
PDF size: 202.96 Kb.
ABSTRACT
Introduction. Systemic administration of pentylenetetrazole (PTZ) causes brain damage (BD), and triggers
a series of morphological and neurochemical changes, which in turn bring about behavioral, cognitive, and
motor deficits. Serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels are controlled by various brain
structures and these levels are related to motor activity; however, the concentration of these neurotransmitters
during the postictal process remains unknown.
Objective. We investigated the concentration of 5-HT, NA and
DA in the hippocampus, cerebellum, and cortex on motor deficit during the postictal stage.
Method. Eighteen
male Wistar rats (300 g) assigned to two groups: control (
n = 9, saline solution) and experimental (n = 9, PTZ)
were used. Myoclonic shakes were counted and motor behavior assessments were recorded during three
hours post PTZ injection (90 mg/kg). The cortex, cerebellum, and hippocampus of each rat were dissected
to determine the 5-HT, DA, and NA concentration by high performance liquid chromatography.
Results. PTZ
induced a significant increase in total 5-HT and DA levels in the hippocampus and cortex; in the cerebellum
there was a significant increase in the concentration of 5-HT and NA. The presence of myoclonic shakes as
well as a marked motor deficit in the experimental group were significantly different in comparison to the control.
Discussion and conclusion. 5-HT modifies the concentration of other monoamines directly involved in
motor aspects such as NA and DA in the hippocampus, cerebellum, and cortex during the postictal process.
REFERENCES
Adamec, R., Burton, P., Blundell, J., Murphy, D. L., & Holmes, A. (2006). Vulnerability to mild predator stress in serotonin transporter knockout mice. Behavioural Brain Research, 170(1), 126-140. doi: 10.1016/j.bbr.2006.02.012
Ahmadi, M., Dufour, J. P., Seifritz, E., Mirnajafi-Zadeh, J., & Saab, B. J. (2017). The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behavioural Brain Research, 330, 1-7. doi: 10.1016/j.bbr.2017.05.025
Becker, A., Grecksch, G., Thiemann, W., & Höllt, V. (2000). Pentylenetetrazolkindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacology Biochemistry and Behavior, 66(2), 425-428. doi: 10.1016/ S0091-3057(99)00264-6
Bhagya, V., Srikumar, B. N., Raju, T. R., & Shankaranarayana Rao, B. S. (2015). The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. Journal of Neuroscience Research, 93(1), 104-120. doi: 10.1002/jnr.23473
Brailowsky, S., Knight, R. T., Blood, K., & Scabini, D. (1986). γ-Aminobutyric acidinduced potentiation of cortical hemiplegia. Brain Research, 362(2), 322-330. doi: 10.1016/0006-8993(86)90457-9
Bueno-Nava, A., Gonzalez-Pina, R., Alfaro-Rodriguez, A., Nekrassov-Protasova, V., Durand-Rivera, A., Montes, S., & Ayala-Guerrero, F. (2010). Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochemical Research, 35(10), 1538-1545. doi: 10.1007/s11064- 010-0213-4
Bueno-Nava, A., Montes, S., DelaGarza-Montano, P., Alfaro-Rodriguez, A., Ortiz, A., & Gonzalez-Pina, R. (2008). Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neuroscience Letters, 443(1), 32-36. doi: 10.1016/j. neulet.2008.07.046
Dempesy, C. W., Tootle, D. M., Fontana, C. J., Fitzjarrell, A. T., Garey, R. E., & Heath, R. G. (1983). Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biological Psychiatry, 18(1), 127-132.
Eraković, V., Župan, G., Varljen, J., & Simonić, A. (2003). Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochemistry International, 42(2), 173-178. doi: 10.1016/S0197-0186(02)00070-0
Felger, J. C., & Treadway, M. T. (2017). Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology, 42(1), 216-241. doi: 10.1038/npp.2016.143
Folbergrová, J., Ingvar, M., & Siesjö, B. K. (1981). Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline‐induced seizures. Journal of Neurochemistry, 37(5), 1228-1238. doi: 10.1111/j.1471- 4159.1981.tb04673.x
Franke, H., & Kittner, H. (2001). Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacology Biochemistry and Behavior, 70(2-3), 291-303. doi: 10.1016/ S0091-3057(01)00612-8
Gholipour, T., Ghasemi, M., Riazi, K., Ghaffarpour, M., & Dehpour, A. R. (2010). Seizure susceptibility alteration through 5-HT3 receptor: modulation by nitric oxide. Seizure, 19(1), 17-22. doi: 10.1016/j.seizure.2009.10.006
Goldstein, L. B. (2006). Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx, 3(4), 451-457. doi: 10.1016/j. nurx.2006.07.010
González-Piña, R., & Paz, C. (1997). Brain monoamine changes in rats after short periods of ozone exposure. Neurochemical Research, 22(1), 63-66. doi: 10.1023/A:1027329405112
González-Piña, R., Bueno-Nava, A., Montes, S., Alfaro-Rodriguez, A., Gonzalez- Maciel, A., Reynoso-Robles, R., & Ayala-Guerrero, F. (2005). Pontine norepinephrine content after motor cortical ablation in rats. Proceedings of the Western Pharmacology Society, 48,73-76.
Haring, J. H. (1991). Reorganization of the area dentata serotoninergic plexus after lesions of the median raphe nucleus. Journal of Comparative Neurology, 306(4), 576-584. doi: 10.1002/cne.903060404
Harris, D., Schevon, C., & Bateman, L. (2017). Postictal Clinical Features of Focal Dyscognitive Seizures (P4. 074). Neurology, 88(16 Supplement), P4-074. ISSN:1526-632X
Hruska, R. E., Kennedy, S., & Silbergeld, E. K. (1979). Quantitative aspects of normal locomotion in rats. Life Sciences, 25(2), 171-179. doi: 10.1016/0024- 3205(79)90389-8
Huang, R. Q., Bell-Horner, C. L., Dibas, M. I., Covey, D. F., Drewe, J. A., & Dillon, G. H. (2001). Pentylenetetrazole-induced inhibition of recombinant γ-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. Journal of Pharmacology and Experimental Therapeutics, 298(3), 986-995.
Institute of Laboratory Animal Resources (US). Committee on Care, Use of Laboratory Animals, & National Institutes of Health (US). Division of Research Resources. (1985). Guide for the care and use of laboratory animals. National Academies.
Kalynchuk, L. E. (2000). Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neuroscience & Biobehavioral Reviews, 24(7), 691-704. doi: 10.1016/S0149-7634(00)00031-2
Koyuncuoglu, T., Vızdıklar, C., Üren, D., Yılmaz, H., Yıldırım, Ç., Atal, S. S., ...Yeğen, B. Ç. (2017). Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides, 90, 37-47. doi: 10.1016/j.peptides.2017.02.005
Kulkarni, S. K., & George, B. (1995). Pentylenetetrazol-induced kindling in animals: protective effect of BR-16A. Indian Journal of Experimental Biology, 33(6), 424-427.
Lee, M., Ryu, Y. H., Cho, W. G., Kang, Y. W., Lee, S. J., Jeon, T. J., ... Choi, T. H. (2015). Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse, 69(9), 453-460. doi: doi.org/10.1002/syn.21834
Löscher, W. (2017). Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochemical Research, 42(7), 1873-1888. doi: 10.1007/s11064-017-2222-z
MacDonald, R. L., & Barker, J. L. (1977). Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature, 267(5613), 720-721. doi: 10.1038/267720a0
Marcinkiewicz, M., Morcos, R., & Chretien, M. C. N. S. (1989). CNS connections with the median raphe nucleus: Retrograde tracing with WGA‐apoHRP‐gold complex in the rat. Journal of Comparative Neurology, 289(1), 11-35. doi: 10.1002/cne.902890103
Meldrum, B. (2002). Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Research, 50(1-2), 33-40. doi: 10.1016/S0920- 1211(02)00066-9
Newman, P. P., & Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. The Journal of Physiology, 287(1), 405-426. doi: 10.1113/jphysiol.1979.sp012667
Norma Oficial Mexicana NOM-062-ZOO-1999. (2001). Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Retrieved from: http://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062- ZOO-1999_220801.pdf
Pérez-García, G., Liy-Salmerón, G., & Meneses, A. (2006). Receptores serotonérgicos y memoria. Revista Mexicana de Análisis de la Conducta, 32(2), 241-269. ISSN: 0185-4534
Peterson, S. L., & Albertson, T. E. (1998). Neuropharmacology methods in epilepsy research. CRC press. ISBN 13: 978-0-8493-3362-0
Sarkisian, M. R. (2001). Overview of the current animal models for human seizure and epileptic disorders. Epilepsy & Behavior, 2(3), 201-216. doi: 10.1006/ ebeh.2001.0193
Shouse, M. N., Staba, R. J., Ko, P. Y., Saquib, S. F., & Farber, P. R. (2001). Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain research, 892(1), 176- 192. doi: 10.1016/S0006-8993(00)03292-3
Szyndler, J., Rok, P., Maciejak, P., Walkowiak, J., Członkowska, A. I., Sienkiewicz- Jarosz, H., ... Kostowski, W. (2002). Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacology Biochemistry and Behavior, 73(4), 851-861. doi: 10.1016/S0091-3057(02)00912-7
Weinshenker, D., & Szot, P. (2002). The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacology & Therapeutics, 94(3), 213-233. doi: 10.1016/S0163-7258(02)00218-8
Yonekawa, W. D., Kupferberg, H. J., & Woodbury, D. M. (1980). Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. Journal of Pharmacology and Experimental Therapeutics, 214(3), 589- 593.
Adamec, R., Burton, P., Blundell, J., Murphy, D. L., & Holmes, A. (2006). Vulnerability to mild predator stress in serotonin transporter knockout mice. Behavioural Brain Research, 170(1), 126-140. doi: 10.1016/j.bbr.2006.02.012
Ahmadi, M., Dufour, J. P., Seifritz, E., Mirnajafi-Zadeh, J., & Saab, B. J. (2017). The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behavioural Brain Research, 330, 1-7. doi: 10.1016/j.bbr.2017.05.025
Becker, A., Grecksch, G., Thiemann, W., & Höllt, V. (2000). Pentylenetetrazolkindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacology Biochemistry and Behavior, 66(2), 425-428. doi: 10.1016/ S0091-3057(99)00264-6
Bhagya, V., Srikumar, B. N., Raju, T. R., & Shankaranarayana Rao, B. S. (2015). The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. Journal of Neuroscience Research, 93(1), 104-120. doi: 10.1002/jnr.23473
Brailowsky, S., Knight, R. T., Blood, K., & Scabini, D. (1986). γ-Aminobutyric acidinduced potentiation of cortical hemiplegia. Brain Research, 362(2), 322-330. doi: 10.1016/0006-8993(86)90457-9
Bueno-Nava, A., Gonzalez-Pina, R., Alfaro-Rodriguez, A., Nekrassov-Protasova, V., Durand-Rivera, A., Montes, S., & Ayala-Guerrero, F. (2010). Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochemical Research, 35(10), 1538-1545. doi: 10.1007/s11064- 010-0213-4
Bueno-Nava, A., Montes, S., DelaGarza-Montano, P., Alfaro-Rodriguez, A., Ortiz, A., & Gonzalez-Pina, R. (2008). Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neuroscience Letters, 443(1), 32-36. doi: 10.1016/j. neulet.2008.07.046
Dempesy, C. W., Tootle, D. M., Fontana, C. J., Fitzjarrell, A. T., Garey, R. E., & Heath, R. G. (1983). Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biological Psychiatry, 18(1), 127-132.
Eraković, V., Župan, G., Varljen, J., & Simonić, A. (2003). Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochemistry International, 42(2), 173-178. doi: 10.1016/S0197-0186(02)00070-0
Felger, J. C., & Treadway, M. T. (2017). Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology, 42(1), 216-241. doi: 10.1038/npp.2016.143
Folbergrová, J., Ingvar, M., & Siesjö, B. K. (1981). Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline‐induced seizures. Journal of Neurochemistry, 37(5), 1228-1238. doi: 10.1111/j.1471- 4159.1981.tb04673.x
Franke, H., & Kittner, H. (2001). Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacology Biochemistry and Behavior, 70(2-3), 291-303. doi: 10.1016/ S0091-3057(01)00612-8
Gholipour, T., Ghasemi, M., Riazi, K., Ghaffarpour, M., & Dehpour, A. R. (2010). Seizure susceptibility alteration through 5-HT3 receptor: modulation by nitric oxide. Seizure, 19(1), 17-22. doi: 10.1016/j.seizure.2009.10.006
Goldstein, L. B. (2006). Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx, 3(4), 451-457. doi: 10.1016/j. nurx.2006.07.010
González-Piña, R., & Paz, C. (1997). Brain monoamine changes in rats after short periods of ozone exposure. Neurochemical Research, 22(1), 63-66. doi: 10.1023/A:1027329405112
González-Piña, R., Bueno-Nava, A., Montes, S., Alfaro-Rodriguez, A., Gonzalez- Maciel, A., Reynoso-Robles, R., & Ayala-Guerrero, F. (2005). Pontine norepinephrine content after motor cortical ablation in rats. Proceedings of the Western Pharmacology Society, 48,73-76.
Haring, J. H. (1991). Reorganization of the area dentata serotoninergic plexus after lesions of the median raphe nucleus. Journal of Comparative Neurology, 306(4), 576-584. doi: 10.1002/cne.903060404
Harris, D., Schevon, C., & Bateman, L. (2017). Postictal Clinical Features of Focal Dyscognitive Seizures (P4. 074). Neurology, 88(16 Supplement), P4-074. ISSN:1526-632X
Hruska, R. E., Kennedy, S., & Silbergeld, E. K. (1979). Quantitative aspects of normal locomotion in rats. Life Sciences, 25(2), 171-179. doi: 10.1016/0024- 3205(79)90389-8
Huang, R. Q., Bell-Horner, C. L., Dibas, M. I., Covey, D. F., Drewe, J. A., & Dillon, G. H. (2001). Pentylenetetrazole-induced inhibition of recombinant γ-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. Journal of Pharmacology and Experimental Therapeutics, 298(3), 986-995.
Institute of Laboratory Animal Resources (US). Committee on Care, Use of Laboratory Animals, & National Institutes of Health (US). Division of Research Resources. (1985). Guide for the care and use of laboratory animals. National Academies.
Kalynchuk, L. E. (2000). Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neuroscience & Biobehavioral Reviews, 24(7), 691-704. doi: 10.1016/S0149-7634(00)00031-2
Koyuncuoglu, T., Vızdıklar, C., Üren, D., Yılmaz, H., Yıldırım, Ç., Atal, S. S., ...Yeğen, B. Ç. (2017). Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides, 90, 37-47. doi: 10.1016/j.peptides.2017.02.005
Kulkarni, S. K., & George, B. (1995). Pentylenetetrazol-induced kindling in animals: protective effect of BR-16A. Indian Journal of Experimental Biology, 33(6), 424-427.
Lee, M., Ryu, Y. H., Cho, W. G., Kang, Y. W., Lee, S. J., Jeon, T. J., ... Choi, T. H. (2015). Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse, 69(9), 453-460. doi: doi.org/10.1002/syn.21834
Löscher, W. (2017). Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochemical Research, 42(7), 1873-1888. doi: 10.1007/s11064-017-2222-z
MacDonald, R. L., & Barker, J. L. (1977). Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature, 267(5613), 720-721. doi: 10.1038/267720a0
Marcinkiewicz, M., Morcos, R., & Chretien, M. C. N. S. (1989). CNS connections with the median raphe nucleus: Retrograde tracing with WGA‐apoHRP‐gold complex in the rat. Journal of Comparative Neurology, 289(1), 11-35. doi: 10.1002/cne.902890103
Meldrum, B. (2002). Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Research, 50(1-2), 33-40. doi: 10.1016/S0920- 1211(02)00066-9
Newman, P. P., & Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. The Journal of Physiology, 287(1), 405-426. doi: 10.1113/jphysiol.1979.sp012667
Norma Oficial Mexicana NOM-062-ZOO-1999. (2001). Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Retrieved from: http://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062- ZOO-1999_220801.pdf
Pérez-García, G., Liy-Salmerón, G., & Meneses, A. (2006). Receptores serotonérgicos y memoria. Revista Mexicana de Análisis de la Conducta, 32(2), 241-269. ISSN: 0185-4534
Peterson, S. L., & Albertson, T. E. (1998). Neuropharmacology methods in epilepsy research. CRC press. ISBN 13: 978-0-8493-3362-0
Sarkisian, M. R. (2001). Overview of the current animal models for human seizure and epileptic disorders. Epilepsy & Behavior, 2(3), 201-216. doi: 10.1006/ ebeh.2001.0193
Shouse, M. N., Staba, R. J., Ko, P. Y., Saquib, S. F., & Farber, P. R. (2001). Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain research, 892(1), 176- 192. doi: 10.1016/S0006-8993(00)03292-3
Szyndler, J., Rok, P., Maciejak, P., Walkowiak, J., Członkowska, A. I., Sienkiewicz- Jarosz, H., ... Kostowski, W. (2002). Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacology Biochemistry and Behavior, 73(4), 851-861. doi: 10.1016/S0091-3057(02)00912-7
Weinshenker, D., & Szot, P. (2002). The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacology & Therapeutics, 94(3), 213-233. doi: 10.1016/S0163-7258(02)00218-8
Yonekawa, W. D., Kupferberg, H. J., & Woodbury, D. M. (1980). Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. Journal of Pharmacology and Experimental Therapeutics, 214(3), 589- 593.