2019, Number 5
<< Back Next >>
Gac Med Mex 2019; 155 (5)
Aproximación genética en la esclerosis lateral amiotrófica
Cervantes-Aragón I, Ramírez-García SA, Baltazar-Rodríguez LM, García-Cruz D, Castañeda-Cisneros G
Language: Spanish
References: 40
Page: 513-521
PDF size: 259.98 Kb.
ABSTRACT
The superoxide dismutase type 1 (SOD1) gene is the first responsible gene mapped in amyotrophic lateral sclerosis type 1
(ALS1), and it codes for the enzyme SOD1, the function of which is to protect against damage mediated by free radicals deriving
from oxygen. Its pathophysiological mechanism in ALS1 is related to ischemia. Several molecular studies of the SOD1
gene show that point mutations are the most frequent. The most common mutations in familial cases are p.A4V, p.I113Y,
p.G37R, p.D90A and p.E100G, which account for more than 80% of cases, although intronic mutations have also been described
as responsible for ALS1. Sporadic cases are explained by mutations in other genes such as SETX and C9orf72. ALS1
is a complex disease with genetic heterogeneity. On the other hand, familial and sporadic cases have a different etiology,
which is explained by molecular heterogeneity and multiple pathogenic mechanisms that lead to ALS1; oxidative stress and
ischemia are not the only cause. In Mexico, ALS molecular genetics studies are scarce. Clinical studies show an increase in
cytokines such as adipsin in cerebrospinal fluid.
REFERENCES
Woolley SC, Rush BK. Considerations for clinical neuropsychological evaluation in amyotrophic lateral sclerosis. Arch Clin Neuropsychol. 2017;32:906-916.
Couratier P, Marin B, Lautrette G, Nicol M, Preux PM. Epidemiology, clinical spectrum of ALS and differential diagnoses. Presse Med. 2014;43:538-548.
Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genet. 2018;30:252-258.
Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14:291-301.
Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist. 2015;21:519-529.
Jones CT, Brock DJ, Chancellor AM, Warlow CP, Swingler RJ. Cu/Zn superoxide dismutase (SOD1) mutations and sporadic amyotrophic lateral sclerosis. Lancet. 1993;342:1050-1051.
Schmitt ND, Agar JN. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. J Mass Spectrom. 2017;52:480-491.
Kikugawa K, Nakano R, Inuzuka T, Kokubo Y, Narita Y, Kuzuhara S, et al. A missense mutation in the SOD1 gene in patients with amyotrophic lateral sclerosis from the Kii Peninsula and its vicinity, Japan. Neurogenetics. 1997;1:113-115.
Zhang CC, Zhu JX, Wan Y, Tan L, Wang HF, Yu JT, Tan L. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget. 2017;8:44994-45007.
Morello G, Spampinato AG, Cavallaro S. molecular taxonomy of sporadic amyotrophic lateral sclerosis using disease-associated genes. Front Neurol. 2017;8:152.
Battistini S, Giannini F, Greco G, Bibbò G, Ferrera L, Marini V, et al. SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study. J Neurol. 2005;252:782-788.
Chiò A, Mazzini L, D’Alfonso S, Corrado L, Canosa A, Moglia C, et al. The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology. 2018;91:e635-e642.
Peters OM, Ghasemi M, Brown RH. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125:1767-1779.
Salem K, McCormick ML, Wendlandt E, Zhan F, Goel A. Copperzinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol. 2015;4:23-33.
Venkataramani V, Doeppner TR, Willkommen D, Cahill CM, Xin Y, Ye G, et al. Manganese causes neurotoxic iron accumulation via translational repression of Amyloid precursor protein and H-Ferritin. J Neurochem. 2018;147:831-848.
Majzúnová M, Pakanová Z, Kvasnička P, Bališ P, Čačányiová S, Dovinová I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J Biomed Sci. 2017;24:72.
Popović-Bijelić A, Mojović M, Stamenković S, Jovanović M, Selaković V, Andjus P, et al. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radic Biol Med. 2016;96:313-322.
D’Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic lateral sclerosis: role of redox (dys) regulation. Antioxid Redox Signal. 2018;29:15-36.
Pardo CA, Xu Z, Borchelt DR, Price DL, Sisodia SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci U S A. 1995;92:954-958.
Carocci A, Catalano A, Sinicropi MS, Genchi G. Oxidative stress and neurodegeneration: the involvement of iron. Biometals. 2018;31:715-735.
Andersen PM, Sims KB, Xin WW, Kiely R, O’Neill G, Ravits J, et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003:4 62-73.
Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993;261:1047-1051.
Abe K, Aoki M, Ikeda M, Watanabe M, Hirai S, Itoyama Y, et al. Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations. J Neurol Sci. 1996;136:108-116.
Eisen A, Mezei MM, Stewart HG, Fabros M, Gibson G, Andersen PM, et al. SOD1 gene mutations in ALS patients from British Columbia, Canada: clinical features, neurophysiology and ethical issues in management. Amyotroph Lateral Scler. 2008;9:108-119.
Alavi A, Nafissi S, Rohani M, Zamani B, Sedighi B, Shamshiri H, et al., Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients. Neurobiol Aging. 2013;34:1516 e1-8.
Battistini S, Ricci C, Giannini F, Calzavara S, Greco G, Del Corona A, et al. G41S SOD1 mutation: a common ancestor for six ALS Italian families with an aggressive phenotype. Amyotroph Lateral Scler. 2010:11:210-215.
Alemasov NA, Ivanisenko NV, Taneja B, Taneja V, Ramachandran S, Ivanisenko VA. Improved regression model to predict an impact of SOD1 mutations on ALS patients survival time based on analysis of hydrogen bond stability. J Mol Graph Model. 2018;86:247-255.
Corcia P, Couratier P, Blasco H, Andres CR, Beltran S, Meininger V, et al. Genetics of amyotrophic lateral sclerosis. Rev Neurol (Paris). 2017;173:254-262.
Morgan S, Shatunov A, Sproviero W, Jones AR, Shoai M, Hughes D, et al. A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain. 2017;140:1611-1618.
Tripolszki K, Török D, Goudenège D, Farkas K, Sulák A, Török N, et al. High-throughput sequencing revealed a novel SETX mutation in a Hungarian patient withamyotrophic lateral sclerosis. Brain Behav. 2017;7:e00669.
Tripolszki K, Csányi B, Nagy D, Ratti A, Tiloca C, Silani V, et al. Genetic analysis of the SOD1 and C9ORF72 genes in Hungarian patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2017;195:e1-195 e5
Martin S, Al-Khleifat A, Al-Chalabi A. What causes amyotrophic lateral sclerosis? F1000Res. 2017;8:371.
Ghasemi M, Brown RH. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2018;8 pii.
Jiménez-Pacheco A, Franco JM, López S, Gómez-Zumaquero JM, Magdalena- Leal-Lasarte M, Caballero-Hernández DE, et al. Epigenetic mechanisms of gene regulation in amyotrophic lateral sclerosis. Adv Exp Med Biol. 2017;978:255-275.
Martínez HR, Escamilla CE, Camara CR, González MT, Tenorio JM, Hernández M. CSF concentrations of adipsin and adiponectin in patients withamyotrophic lateral sclerosis. Acta Neurol Belg. 2017;117(4):879-883.
Martínez HR, Escamilla CE, TenorioJM, Gómez D, Jaime JC, Olguín- LA, et al. Altered CSF cytokine network in amyotrophic lateral sclerosis patients: a pathway-based statistical analysis. Cytokine. 2017;90:1-5.
Martínez HR, Parada JD, Meza ME, González MT, Moreno CJ. Esclerosis lateral amiotrófica. Contribución de la neurología mexicana de 1998 a 2014. Rev Mex Neuroci. 2014;15:355-362.
Arriada N, Ríos C, Otero-Siliceo E, Corona-Vázquez T. ALS in a secluded region in Mexico possibly related to lead toxicity. Arch Neurociences. 2000;5:2-5.
Bresch S, Delmont E, Soriani MH, Desnuelle C. Electrodiagnostic criteria for early diagnosis of bulbar-onset ALS: a comparison of El Escorial, revised El Escorial and Awaji algorithm. Rev Neurol (Paris). 2014;170:134-139.
Cervantes I, Ramírez S, García D. Amyotrophic lateral sclerosis positive for mutation in the CYTB gene and negative for SOD1 and ATXN2. Rev Fac Med. 2017;65:377-378.