2019, Number 2
Next >>
Med Cutan Iber Lat Am 2019; 47 (2)
Artificial intelligence in dermatology: the machine-man union makes the force
Pereyra RJJ, Conejo-Mir J
Language: Spanish
References: 5
Page: 89-91
PDF size: 175.95 Kb.
Text Extraction
No abstract.
REFERENCES
Hekler A, Utikal JS, Enk AH et al. Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer. 2019; 120: 114-121. doi: 10.1016/j.ejca.2019.07.019.
Tan KC, Goh CL. Computer applications in dermatology. Ann Acad Med Singapore. 1990; 19 (5): 684-686.
Boldrick JC, Layton CJ, Nguyen J, Swetter SM. Evaluation of digital dermoscopy in a pigmented lesion clinic: clinician versus computer assessment of malignancy risk. J Am Acad Dermatol. 2007; 56 (3): 417-421. doi: 10.1016/j.jaad.2006.08.033.
Haenssle HA, Fink C, Schneiderbauer R et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018; 29 (8): 1836-1842. doi: 10.1093/annonc/mdy166.
Murray E, Treweek S, Pope C et al. Normalization process theory: a framework for developing, evaluating and implementing complex interventions. BMC Med. 2010; 8 (1): 63. doi: 10.1186/1741-7015-8-63.