2019, Number 3
<< Back Next >>
Odovtos-Int J Dent Sc 2019; 21 (3)
Physicochemical and Tissue Response of PLA Nanofiber Scaffolds Sterilized by Different Techniques
Mendieta-Barrañon I, Chanes-Cuevas OA, Álvarez-Pérez MA, González-Alva P, Medina LA, Aguilar-Franco M, Serrano-Bello J
Language: English
References: 27
Page: 77-88
PDF size: 283.40 Kb.
ABSTRACT
In recent years, tissue engineering has evolved considerably, due to the problems in the biomedical
area concerning tissue regeneration therapies. Currently, work has been focused on the synthesis and
physicochemical characterization of poly lactic acid scaffolds, a synthetic polyester that has been
extensively study for its excellent biocompatibility and biodegradability. Moreover, sterilization strategies
of scaffold are a crucial step for its application in tissue regeneration, however, the sterilization process
have to maintain the structural and biochemical properties of the scaffold. Therefore, it is very important
to carry out studies on the sterilization methods of the sample’s material, since translational medicine
is intended for in vivo applications. The aim of the present study was designed to analyze the effects of
different sterilization techniques, i.e. ethylene oxide (ETO), gamma radiation (GR) and hydrogen peroxidebased
plasma (H2O2) in biodegradable PLA scaffolds, and to determine the best sterilization technique to
render a sterile product with minimal degradation and deformation, and good tissue response. Analysis
of surface morphology showed that ETO and GR modified the PLA scaffolds without any change in its
chemical composition. Moreover, the histological response showed that the scaffolds are biocompatible
and those sterilized by GR showed a more severe inflammatory response, accompanied with the presence
of giant foreign body cells. In conclusion, the results show that among sterilization techniques used in
the preset study, the best results were observed with H2O2 sterilization, since it did not significantly
modify the surface structure of the PLA fibers and their
in vivo response did not cause an unfavorable
tissue reaction.
MENDIETA
REFERENCES
Rosales Ibáñez R., Alvarado Estrada K. N., Ojeda Gutiérrez F. Ingeniería Tisular en Odontología. Rev Adm. 2012;VOL. LXIX (4): 164-7.
Hernández Figueroa C. Obtención de andamios de colágeno para la restauración del tejido del miocardio. 2016;VII (3): 15-24.
Estrada Catalina, Paz Ana Cristina LLE. Ingeniería de tejido óseo: Consideraciones básicas. Rev EIA. 2006; 5: 93-100.
German F., Atala A. Reconstrucción de tejidos y órganos utilizando ingeniería tisular. Arch argent pediatr. 2000; 98 (2): 103-15.
Ribeiro L., Castro E., Ferreira M., Helena D., Robles R., Faria e Almeida A, et al. Conceptos y aplicaciones de la ingeniería tisular en Otorrinolaringología. Acta Otorrinolaringológica Española. 2015; 66 (1): 43-8.
Fabres V. C. Técnicas del futuro: ingeniería de tejidos y uso de células madre en medicina reproductiva. Rev Médica Clínica Las Condes. 2010; 21 (3): 488-93.
Yoganarasimha S., Trahan W. R., Best A. M., Bowlin G. L., Kitten T. O., Moon P. C., et al. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds. Tissue Eng Part C Methods [Internet]. 2014; 20 (9): 714-23. Available from: http:// online.liebertpub.com/doi/full/10.1089/ten. tec.2013.0624%5Cnhttp://online.liebertpub. com/doi/abs/10.1089/ten.tec.2013.0624
Ochoa S, Aguilar N, Méndez A. Investigación y Ciencia. Ing tejidos Una nueva Discip en Med Regen [Internet]. 2012;64:61–9. Available from: http://www.investigacionyciencia.es/ revistas/investigacion-y-ciencia/numero/429/ el-futuro-de-la-energa-elica-8652
Ibarra C., Garciadiego D., Martínez V., Velasquillo C. Ingeniería de tejidos y osteoartritis. Reumatol Clínica [Internet]. 2007;3(Supplement 3):S19-22. Available from: http://www.sciencedirect.com/science/ article/pii/S1699258X07736501
Sequeda L. G., Díaz J. M., Gutiérrez S. J., Perdomo S. J., Gómez O. L. Obtención de hidroxiapatita sintética por tres métodos diferentes y su caracterización para ser utilizada como sustituto óseo. Rev Colomb Ciencias Químico-Farmacéuticas. 2012; 41 (1): 50-66.
MacNeil S. Progress and opportunities for tissue-engineered skin. Nature [Internet]. 2007; 445 (7130): 874-80. Available from: http://www.nature.com/doifinder/10.1038/ nature05664%5Cnhttp://www.ncbi.nlm.nih. gov/pubmed/17314974
Rezwan K., Chen Q. Z., Blaker J. J. R. B. Biodegradable and bioactive porous polymer/ inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27: 3413-31.
Zhang L., Webster T. J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today. 2009; 4 (1): 66-80.
Beltrán F., Pérez E., Cerrada M. L., de la Orden M. U., Martínez-Urreaga J. Caracterización por espectroscopía IR de cambios estructurales del poli(ácido láctico) en presencia de agua. efecto de la incorporación de arcillas. Avances en Materiales Poliméricos. XIV Reunión del Grupo Especializado de Polímeros (GEP) de la RSEQ y RSEF". 2016. 87-88 p.
Jiménez P., Sibaja M., Vega-Baudrit J. Síntesis y caracterización de Poli(Ácido L-Láctico) por policondensación directa, obetenido del fermento de deshechos agroindustriales de banano (Musa acuminata AAA variedad Cavendish cultivar Gran naine) en Costa Rica. Rev Oberoamericana Polímeros. 2012; 13 (2): 52-9.
Suarez-Franco J. L., Vázquez-Vázquez F. C., Pozos-Guillen A. M. J., Alvarez-Fregoso O A-PM. Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells. Dent Mater J. 8;37 (3): 465-73.
Colorado A. C., Agudelo C. A., Moncada A. M. E. Análisis de Biomateriales para uso en ingeniería de tejidos de piel. Rev ing biomed. 2013; 7: 11-23.
Chachques J. C., Herreros J., Trainini J. C., Lago N., Díez Solórzano L., Tascón V., et al. Ingeniería tisular y miocardio bioartificial. Cirugía Cardiovasc [Internet]. 2011; 18 (3): 217-24. Available from: http://linkinghub. elsevier.com/retrieve/pii/S1134009611700572
Rediguieri F., Corte R., Dua K., Satiko I., Terezinha De J., Pinto A. Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur Polym J [Internet]. 2016; 82: 181-95. Available from: http:// dx.doi.org/10.1016/j.eurpolymj.2016.07.016
Valente T. A. M., Silva D. M., Gomes P. S., Fernandes M. H., Santos J. D., Sencadas V. Effect of sterilization methods on electrospun poly (lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces. 2016; 8 (5): 3241-9.
Loo J. S. C., Ooi C. P., Boey F. Y. C. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials [Internet]. 2005 Apr [cited 2017 Jul 19]; 26 (12): 1359-67. Available from: http://linkinghub.elsevier. com/retrieve/pii/S0142961204004429
Cottam E., Hukins D. W. L., Lee K., Hewitt C., Jenkins M. J., Wallace W. A., et al. Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Med Eng Phys [Internet]. 2009 Mar 1 [cited 2017 Jul 20]; 31 (2): 221- 6. Available from: http://www.ncbi.nlm.nih. gov/pubmed/18760952
Gorna K., Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab. 2003; 79 (3): 465-74.
Dai Z., Ronholm J., Tian Y., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng [Internet]. 2016;7:204173141664881. Available from: http://journals.sagepub.com/ doi/10.1177/2041731416648810
Broon N. J., Martínez M. P., Ramírez M. L., Tinajero M. C., Lagunas Á. L., Bramante C. M. Respuesta inflamatoria de Bioceramic a la implantación de tubos de dentina en tejido sucutáneo de ratas. Rev Odonto Mex. 2016; 20 (3):174-8.
Bosworth L. A., Gibb A., Downes S. Gamma irradiation of electrospun poly(ε-caprolactone) fibers affects material properties but not cell response. J Polym Sci Part B Polym Phys. 2012; 50 (12): 870-6.
Holy C. E., Cheng C., Davies J. E., Shoichet M. S. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials [Internet]. 2000 Jan [cited 2017 Jul 19]; 22 (1): 25-31. Available from: http://linkinghub.elsevier.com/retrieve/pii/ S0142961200001368