2018, Number 3
<< Back
Revista Cubana de Obstetricia y Ginecología 2018; 44 (3)
The Notch signaling pathway at the origin of some congenital malformations
Taboada LN
Language: Spanish
References: 33
Page: 1-17
PDF size: 147.03 Kb.
ABSTRACT
Notch signaling pathway plays a key role to regulate cell grow, fates, proliferation and programmed cell death in development of eukaryotic organisms. This pathway is related with an enormous diversity of developmental processes and its dysfunction is implicated in the origin of many congenital malformations. A review was performed to provide updated information on Notch signaling pathway involved in the origin of some congenital malformations related with maternal deficiency of folic acid and other micronutrients. Published medical literature in Spanish and English languages was retrieved from PubMed, Medline, Scielo, Lilacs and the Cochrane Library in January 2018, using appropriate key words. Knowledge about this signaling pathway could help to better understand some topics of morphogenesis, since by acting as a master controller of cell fate, proliferation, differentiation and programmed cell death, it offers susceptible and specific points which make possible to prevent some human congenital malformations..
REFERENCES
Moore KL, Persaud TVN. Control del desarrollo embrionario. En: Embriología clínica. 8ª ed. Barcelona: Elsevier; 2011. p.75-79
Takebe N, Miele L, Jo Harris P, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Onc. [en línea]. 2015[citado 15 de enero de 2018];12:445-64. Disponible en: https://www.nature.com/articles/nrclinonc.2015.61
Yu KW, Yao CC, Jeng JH, Shieh HY, Chen YJ. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells. J Formos Med Assoc. [en línea]. 2018[citado 15 de enero de 2018];17:820-33. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29306496
Bray SJ. Notch signalling: a simple pathway becomes complex. Nature Review. Molecular Cell Biol. [en línea]. 2006[citado 8 de enero de 2018];7:678-89. Disponible en: www.nature.com/reviews/molcellbio
Serrano HA. Papel de la vía de señalización Notch en la diferenciación de las células inmunes. CES Med. [en línea]. 2017[citado 15 de enero de 2018];31(2):155-62. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-87052017000200155
Wehner D, Gilbert G. Signaling networks organizing regenerative growth of the zebrafish fin. Review. Special Issue: Organogenesis. [en linea] 2015[citado 15 de enero de 2018];31(6):336-43. Disponible en: http://www.sciencedirect.com/science/article/pii/S0168952515000657
Wang L, Song G, Liu M, Chen B, Chen Y, Shen Y, et al. MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway. Intern J Mol Med. [en linea]. 2016[citado 15 de enero de 2018];37(1):47-55. Disponible en: https://www.spandidos-publications.com/ijmm/37/1/47
Chuang JH, Tung LC, Yenshou L. Neural differentiation from embryonic stem cells in vitro: An overview of the signaling pathways. World J Stem Cells. [en linea]. 2015[citado 15 de enero de 2018];7(2):437-47. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369499/
Bravo PA, Baizabal AVM. La vía de señalización notch y el desarrollo embrionario animal. [Internet]. 2005[citado 15 de enero de 2018];24(3,4). Disponible en: http://www.facmed.unam.mx/publicaciones/ampb/numeros/2005/03/h_87-96_NotchBravo.pdf
Rodriguez BFY. Vía de señalización Notch durante el desarrollo de arcos branquiales en el embrión de pollo: estadios HH14 a HH18. [en linea]. 2012; Tesis para optar por el titulo de Master en Ciencias, Universidad Nacional de Colombia. 2012[citado 15 de enero de 2018]. Disponible en: http://www.bdigital.unal.edu.co/9069/
Aster JC. In Brief: Notch signalling in health and disease. J. Pathol. [en linea]. 2014[citado 15 de enero de 2018];232:1-3. Disponible en: http://onlinelibrary.wiley.com/doi/10.1002/path.4291/full
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Mod & Mech. [en linea]. 2016[citado 15 de enero de 2018];9:235-44. Disponible en: http://dmm.biologists.org/content/9/3/235
Liu F, Sun D, Murakami R, Matsuno H. Modeling and analysis of the Delta-Notch dependent boundary formation in the Drosophila large intestine. BMC Syst Biol. [en linea]. 2017[citado 15 de enero de 2018];11(Suppl 4):80. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28950873
Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E. Delta asymmetry in Notch signaling can give rise to a sender/receiver hybrid phenotype. Jagged-Proc Natl Acad Sci USA [en linea]. 2015[citado 15 de enero de 2018];112:402-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25605936
Grochowski CM, Loomes KM, Spinner NB. Jagged1 (JAG1). Structure, expression, and disease associations. Gene [en linea]. 2016[citado 15 de enero de 2018];576(1):381-4. Disponible en: http://www.sciencedirect.com/science/article/pii/S0378111915012986
Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E. Jagged-Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc Natl Acad Sci U S A. [en linea]. 2015;3;112(5) [citado 15 de enero de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25605936
LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. Elife. [en linea]. 2014[citado 15 de enero de 2018];25:3. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25255098
Troletti CD, Lopes Pinheiro MA, Charabati M, Gowing E, van Het Hof B, der Pol SM, et al. Notch signaling is impaired during inflammation in a Lunatic Fringe-dependent manner. Brain Behav Immun. [en linea]. 2017[citado 15 de enero de 2018]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29289661
Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, et al. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Sci Direct. [en linea]. 2015[citado 15 de enero de 2018];33(4):373-87. Disponible en: http://www.sciencedirect.com/science/article/pii/S1534580715001732
Menendez MT, Ong EC, Shepherd BT, Muthukumar V, Silasi-Mansat R, Lupu F, et al. BRG1 (Brahma-Related Gene 1) promotes endothelial Mrtf transcription to establish embryonic capillary integrity. Arterioscler Thromb Vasc Biol. [en linea]. 2017[citado 15 de enero de 2018];37(9):1674-82. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28729363
Tchasovnikarova IA, Kingston RE. Beyond the histone code: A physical map of chromatin states. Mol Cell. [en linea]. 2018[citado 15 de enero de 2018];69(1):5-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29304334
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, et al. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. Elife. [en linea]. 2017[citado 15 de enero de 2018];4(6). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29199954
Baldi A, De Falco M, De Luca L, Cottone G, Paggi MG, Nickoloff BJ, et al. Characterization of tissue specific expression of Notch-1 in human tissues. Biol Cell. 2004;96:303-11.
Kerstjens FWS, van de Laar IMB, Vos YJ, Verhagen JMA, Berger RMF, Lichtenbelt KD. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. [en linea]. 2016[citado 15 de enero de 2018];18:914-23. Disponible en: https://www.nature.com/articles/gim2015193
Carbonell Medina BA. Rol de la vía de señalización notch durante el desarrollo de estructuras craneofaciales. Rev Fac Odontol. [en linea]. 2014[citado 15 de enero de 2018];26(1). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_pdf&pid=S0121-246X2014000200011&lng=es&nrm=iso&tlng=es
Monroy MIE, Pérez HN, Vargas AG, Ortiz SG, Buendía HA, Calderón CJ, et al. Cambiando el paradigma en las cardiopatías congénitas: de la anatomía a la etiología molecular. Gaceta Med México. [en linea]. 2013[citado 15 de enero de 2018];149:212-9. Disponible en: http://new.medigraphic.com/cgi-bin/resumen.cgi?IDARTICULO=41594
Taboada LN. El zinc y el cobre: micronutrientes esenciales para la salud humana. Acta Med Centro. [en linea] 2017[citado 15 de enero de 2018];11(2):79-89. Disponible en: http://www.revactamedicacentro.sld.cu/index.php/amc/article/view/821/1076
Hammouda SA, Abd Al-Halim OA, Mohamadin AM. Serum levels of some micronutrients and congenital malformations: a prospective cohort study in healthy saudi-arabian first-trimester pregnant women. Int J Vitam Nutr Res. 2013;83(6):346-54.
Li S, Chao A, Li Z, Moore CA, Liu Y, Zhu J, et al. Folic acid use and nonsyndromic orofacial clefts in China: a prospective cohort study. Epidemiology. 2012;23:423-32.
Li X, Li S, Mu D, Liu Z, Li Y, Lin Y, et al. The association between periconceptional folic acid supplementation and congenital heart defects: a case-control study in China. Prev Med. 2013;56:385-9.
Taboada LN. Papel del ácido fólico, zinc y cobre en la prevención primaria de los defectos congénitos. Rev cubana Med Gen Integ. [en linea] 2016[citado 15 de enero de 2018];35(4). Disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167
Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett. [en linea] 2018[citado 15 de enero de 2018];15(1):31-40. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29285185
Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med. [en linea] 2014[citado 15 de enero de 2018];4:1-10. Disponible en: http://perspectivesinmedicine.cshlp.org/content/4/10/a015750.short