2018, Number 3
Next >>
Rev Cubana Med Trop 2018; 70 (3)
Insecticide resistance in Aedes aegypti (Diptera: Culicidae) strains from three districts of the Central Pacific Region of Costa Rica
Calderón-Arguedas Ó, Vargas K, Troyo A
Language: Spanish
References: 23
Page: 1-9
PDF size: 237.47 Kb.
ABSTRACT
Introduction: Aedes aegypti is the vector of dengue, chikungunya, and Zika viruses in Costa Rica. The high incidence and the lack of vaccines make vector control, including chemical control, the only measure to prevent transmission. The repetitive use of insecticides may induce resistance.
Objective: To determine resistance and enzymatic detoxifying mechanisms to temephos and pyrethroids insecticides in strains of Ae. aegypti from three districts of the Central Pacific Region of Costa Rica.
Methods: Resistance to temephos, deltamethrin, and cypermethrin was determined in three strains of Barranca, Jacó, and Quepos by larval bioassays. In each test, the lethal concentration 50 % (LC50) and a factor of resistance 50 % (FR50) were calculated, using the Rockefeller strain as control. When resistance was observed, the bioassays were repeated using piperonyl butoxide, S,S,S, tributylphosphorotritioate, and ethacrynic acid, that inhibit monoxygenases, esterases, and glutathione S- transfererase, respectively.
Results: None of the strains were resistant to temephos. Resistance to deltamethrin (FR50= 7.38 and FR50= 28.23, respectively) was determined in the strains from Barranca and Jacó, while resistance to cypermethrin was detected only in Jacó (FR50= 7.70). The Quepos strain was not resistant to any pyrethroid. Only the Barranca strain showed a decrease in the resistance to deltamethrin when piperonyl butoxide was used, linking the resistance to monooxygenase enzymes (FR50: 10.10). For the other cases, none of the synergists decreased the resistance.
Conclusions: Larvae of Ae. aegypti from the localities evaluated were not resistant to temephos. With respect to pyrethroids, results show an emergence of resistance that may not be mediated by enzymatic detoxification.
REFERENCES
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316(5832):1718-23.
Morice-Trejos A, Marín-Rodríguez R, Ávila-Agüero ML. El dengue en Costa Rica: evolución histórica, situación actual y desafíos. En: Escuela de Salud Pública (UCR). Estado actual, retos y perspectivas. Costa Rica: Sistema Editorial y de difusión de la información. Universidad de Costa Rica; 2010.
Troyo A, Porcelain SL, Calderón-Arguedas O, Chadee DD, Beier JC. Dengue in Costa Rica: the gap in local scientific research. Rev Panam Salud Pública. 2006;20:350-60.
Ministerio de Salud de Costa Rica. Situación del dengue 2013 [citado 20 sept 2017]. Disponible en: https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-de-situacion-de-salud
Corrales Aguilar E, Troyo A, Calderón-Arguedas O. Chikungunya: un virus que nos acecha. Acta Méd Costarric. 2015;57:7-15.
Calderón-Arguedas O, Moreira-Soto R, Troyo A. Zika Virus (ZIKA: New Emerging Pathogen Transmitted by Aedes Mosquitoes (Diptera: Culicidae) in the Latin American Subcontinent. Vector Biol J. 2016;1(1). DOI: 10.4172/2473-4810.1000103
Manjarres-Suarez, A, Olivero-Verbel J. Chemical control of Aedes aegypti: a historical perspective. Rev Costarric Salud Pública. 2013;22:68-75.
Bisset JA, Marín R, Rodríguez MM, Severson DW, French L, Díaz M, et al. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol. 2013;50:352-61.
Calderón-Arguedas O, Troyo A. Evaluación de la resistencia a insecticidas en cepas de Aedes aegypti (Diptera: Culicidae) de la Región Caribe de Costa Rica. Rev Cubana Med Trop. 2016;68(1).
Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology 2016 [citado 20 sept 2017];133:1-12. Disponible en: https://doi.org/10.1016/j.pestbp.2016.03.005
Bisset JA. Uso correcto de insecticidas: control de la resistencia. Rev Cubana Med Trop. 2002;54:202-19.
Bisset J, Blanco S, Braga I, Coto H, Massuh H, Moncayo A, et al. Protocolo para determinar la susceptibilidad o resistencia a insecticidas de mosquitos de la especie Ae. aegypti. Puerto Iguazú: Fundación Mundo Sano/Red Latinoamericana de Control de Vectores (RELCOV); 2005.
Mazzari MB, Geroghiou GP. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Cont Assoc. 1995;11:315-22.
Bisset JA, Rodríguez MM, Cáceres L. Niveles de resistencia a insecticidas y sus mecanismos en 2 cepas de Aedes aegypti de Panamá. Rev Cubana Med Trop. 2003;55:191-5.
Calderón-Arguedas O, Troyo A. Perfil de resistencia a insecticidas en una cepa de Aedes aegypti (Linnaeus) de la región Caribe de Costa Rica. Rev Cubana Med Trop. 2014;66:351-9.
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLOS Neglected Tropical Diseases. 2017 [citado 20 sept 2017];11(7):e0005625. Disponible en: https://doi.org/10.1371/journal.pntd.0005625
Harris AF, Rajatileka S, Ranson H. Pyrethroid Resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg. 2010;83:277-84. doi: 10.4269/ajtmh.2010.09-062.
Bingham G, Strode C, Tran L, Khoa PT, Jamet HP. Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Health. 2011;16:492-500. doi: 10.1111/j.1365-3156.2010.02717.x.
Hardstone M, Leichter C, Harrington LC, Kasai S, Tomita T, Scott JG. Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus. Pesticide Biochemistry and Physiology. 2007 [citado 20 sept 2017];89:175-84. Disponible en: https://doi.org/10.1016/j.pestbp.2007.06.006
Takahashi O, Oishi S, Fujitani T, Tanaka T, Yoneyama M. Chronic toxicity studies of piperonyl butoxide in F344 rats: induction of hepatocellular carcinoma. Fundam Appl Toxicol. 1994;22:293-303.
Yavuz O, Aksoy A, Das YK, Gulbahar MY, Yarim GF, Cenesiz M, et al. Repeated-dose 14-day dermal toxicity of different combinations of some synthetic pyrethroid insecticides, piperonyl butoxide, and tetramethrin in rats. Cutaneous and Ocular Toxicology. 2010;29:16-25.
Yavuz O, Aksoy A, Das YK, Gulbahar MY, Guvenc D, Atmaca E, et al. Subacute oral toxicity of combinations of selected synthetic pyrethroids, piperonyl butoxide, and tetramethrin in rats. Toxicol Ind Health. 2015;31:289-97.
Vardavas AI, Stivaktakis PD, Tzatzarakis MN, Fragkiadaki P, Vasilaki F, Tzardi M, et al. Long-term exposure to cypermethrin and piperonyl butoxide cause liver and kidney inflammation and induce genotoxicity in New Zealand white male rabbits. Food Chem Toxicol. 2016;94:250-9. doi: 10.1016/j.fct.2016.06.016.