2019, Number 3
<< Back Next >>
Rev Biomed 2019; 30 (3)
Activity evaluation of the arginase enzyme in patients with diabetes mellitus in Veracruz, Mexico
Pérez-Acosta JC, Garrido-Llanos S, Trejo-Sánchez BE, García-Sánchez JR, Olivares-Corichi IM, González-Garrido JA
Language: Spanish
References: 29
Page: 116-123
PDF size: 325.93 Kb.
ABSTRACT
Introduction. Diabetes mellitus (DM) is a chronic disease that increases
its frequency every year, and the search for strategies that are helpful in
prevention or control are the objective in several studies. DM can decrease
the bioavailability of nitric oxide (NO) by various mechanisms, presenting
endothelial dysfunction. Several studies in animal models and in vitro studies
suggest the participation of arginase in DM, being a direct competitor for the
substrate of nitric oxide synthase (NOs), decreasing NO production.
Objectives. In this study, the activity of the enzyme arginase was determined
in DM patients as a possible marker of the progress of the disease.
Material and Methods. A cross-sectional study was carried out, in which
fasting blood tests of 12 hours were used, anthropometric parameters,
glucose levels, cholesterol were determined, and plasma arginase activity
was evaluated.
Results and conclusions. A total of 104 patients participated, 37 controls
and 67 with DM. The results suggest that the activity of arginase does not
play a role as a marker of the disease in patients with DM who do not show
signs of advanced disease
REFERENCES
OMS (Organización Mundial de la Salud). Prevalencia de la diabetes y de los factores de riesgo conexos en México. 1. 2016;1.
Lamuchi-Deli N, Aberomand M, Babaahmadi-Rezaei H, Mohammadzadeh G. Effects of the hydroalcoholic extract of Zingiber officinale on arginase i activity and expression in the retina of streptozotocin-induced diabetic rats. Int J Endocrinol Metab. 2017;15(2): 1-7. DOI: 10.5812/ijem.42161
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes [Internet]. 2017;9(5):434–49. Available from: http://doi.wiley. com/10.1111/1753-0407.12521
Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: An old enzyme with new tricks. Trends Pharmacol Sci. 2015;36(6):395–405. DOI: 10.1016/j. tips.2015.03.006.
Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34(9):906–11. DOI: 10.1111/j.1440-1681.2007.04638.x .
Lange PS, Langley B, Lu P, Ratan RR. Novel roles for arginase in cell survival, regeneration, and translation in the central nervous system. J Nutr. 2004;134(10 Suppl):2812S–2817S; discussion 2818S–2819S. DOI: 134/10/2812S [pii].
Li H, Meininger CJ, Hawker JR, Haynes TE, Kepka- Lenhart D, Mistry SK, et al. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab. 2001;280(1):E75-82. DOI: doi.org/10.1152/ ajpendo.2001.280.1.E75.
Qin Z, Hou X, Weisbrod RM, Seta F, Cohen RA, Tong X. Nox2 mediates high fat high sucrose diet-induced nitric oxide dysfunction and inflammation in aortic smooth muscle cells. J Mol Cell Cardiol. 2014;72:56–63. DOI: 10.1016/j.yjmcc.2014.02.019.
Shemyakin A, Kövamees O, Rafnsson A, Böhm F, Svenarud P, Settergren M, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation. 2012;126(25):2943–50. DOI: 10.1161/ CIRCULATIONAHA.112.140335.
Shatanawi A, Romero M, Iddings J, Chandra S, Umapathy N, Verin A, et al. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol. 2011;300(5):C1181-92. DOI: 10.1152/ajpcell.00328.2010.
Patel C, Rojas M, Narayanan SP, Zhang W, Xu Z, Lemtalsi T, et al. Arginase as a mediator of diabetic retinopathy. Front Immunol. 2013;4:1–11. DOI: 10.1152/ ajpcell.00328.2010.
Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA/ Rho kinase pathway. Br J Pharmacol. 2012;165(2):506– 19. DOI: 10.1111/j.1476-5381.2011.01584.x
Kövamees O, Shemyakin A, Checa A, Wheelock CE, Lundberg JO, Östenson CG et al. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab, 2016, 101(11):3952–58.
Corraliza IM, Campo ML, Soler G, Modolell M. Determination of arginase activity in macrophages: a micromethod. J Immunol Methods. 1994;174(1–2):231– 5. DOI: 10.1016/0022-1759(94)90027-2.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein Carbonyl Groups as biomarkers of oxidative stress. Clin. Chim. Acta. 329:1-2, 23-38, 2003.
Morris SM, Gao T, Cooper TK, Kepka-Lenhart D, Awad AS. Arginase-2 mediates diabetic renal injury. Diabetes. 2011; 60(11):3015–22. DOI: 10.1016/0304- 3894(92)87011-4.
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy. Eur Heart J. 2013; 34(31):2436-43. doi: 10.1093/eurheartj/eht149.
Yao L, Chandra S, Toque HA, Bhatta A, Rojas M, Caldwell RB, et al. Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovasc Res. 2013; 97(3):509–19. DOI: 10.1093/cvr/cvs371.
Jung C, Figulla HR, Lichtenauer M, Franz M, Pernow J. Increased levels of circulating arginase I in overweight compared to normal weight adolescents. Pediatr Diabetes. 2014;15(1):51–6. DOI: 10.1111/pedi.12054.
Kashyap SR, Lara A, Zhang R, Park YM, DeFronzo RA. Insulin reduces plasma arginase activity in type 2 diabetic patients. Diabetes Care. 2008; 31(1):134–9. DOI: 10.2337/dc07-1198.
Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM. Decreased Arginine Bioavailability and Increased Serum Arginase Activity in Asthma. Am J Respir Crit Care Med. 2004; 170(2):148– 53. DOI: 10.1164/rccm.200309-1304OC.
Dimitriades V, Rodriguez PC, Zabaleta J, Ochoa A. Arginase I levels are decreased in the plasma of pediatric patients with Atopic Dermatitis. Ann Allergy Asthma Immunol. 2014; 113(3): 271–275. DOI: 10.1016/j. anai.2014.06.010.
González JA, Olivares IM, Tovar JM, Hernández NA, Méndez E, Ceballos GM, et al. Influence of the AT2 receptor on the L-arginine–nitric oxide pathway and effects of (-)-epicatechin on HUVECs from women with preeclampsia. Journal of Human Hypertension 2013; (27) 355–361
Gálvan MF, Calderón JV, Intrago M, Torres A, Zamarripa R, Meléndez CD, et al. Oxidative stress in patients with different clinical expression of metabolic syndrome.Med Int Méx. 2014; 30(6): 651-659
Tsao CF, Huang WT, Liu TT, Wang PW, Liou CW, Lin TK. Expression of high-mobility group box protein 1 in diabetic foot atherogenesis. Genet.Mol.Res. 2015; 14 (2): 4521-4531. DOI: 10.4238/2015.May.4.10
Rincón Víquez MJ, García-Sánchez JR, Tapia González MA, Gutiérrez López L, Ceballos-Reyes GM, Olivares- Corichi IM. Insulin polymers in the plasma of obese subjects are associated with elevated levels of carbonyl groups and are decreased by (-)-epicatechin. Horm Metab Res. 2014; 46 (7):499-504.
Luna C, Estévez M. Oxidative damage to food and human serum proteins: Radical-mediated oxidation vs. glyco-oxidation. Food Chem. 2018 Nov 30; 267: 111-
DOI: 10.1016/j.foodchem.2017.06.154.