2019, Number 3
<< Back Next >>
Rev Biomed 2019; 30 (3)
Comparison of methods for estimating resting energy expenditure in young adults in Yucatan, Mexico
Espadas-Herrera JC, González-Ramírez L, Ávila-López JC, Janssen-Aguilar R, Molina-Seguí F, Huerta-Quintanilla R, Hernández-Hernández AM, Canto-Lugo E, Laviada-Molina HA
Language: Spanish
References: 36
Page: 105-115
PDF size: 362.33 Kb.
ABSTRACT
Introduction. Extrapolation of predictive mathematical equations for resting
metabolic rate (RMR) to populations other than the original one where they
were developed, may compromise the accuracy of the calculation.
Objective. Compare predictive equations of RMR versus indirect calorimetry
(IC) to determine the best alternative for young adult university students in
Yucatán.
Method. Cross-sectional study with 34 women and 30 men (20.25 ± 1.5
years) classified according to their body mass index (BMI): not overweight
subgroup and overweight subgroup. The RMR measurement was performed
through a portable indirect calorimeter. Statistical analysis included bias
evaluation with 95% confidence intervals, accuracy, precision, and Pearson
correlation (P=0.01).
Results. Despite a high correlation between the predictive equations of RMR
and IC, it was not possible to identify the one with clear superiority over the
rest. The Mifflin St Jeor equation showed some advantages as the total best
correlation with calorimetry.
Conclusion. In the clinical practice, predictive equations are useful and
accessible instruments that should not be discarded despite its limitations.
REFERENCES
Psota T, Chen KY. Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr. 2013 May; 67(5): p. 436–442. DOI: https://doi. org/10.1038/ejcn.2013.38
Frankenfiel DC, Ashcraft C. Estimating Energy Needs in Nutrition Support Patients. JPEN J Parenter Enteral Nutr. 2011 Sep; 35(5): p. 563-570. DOI: https://doi. org/10.1177/0148607111415859
Parra A, Cherem L, Galindo D, Díaz M, Pérez AB, Hernández C. Comparación del gasto energético en reposo determinado mediante calorimetría indirecta y estimado mediante fórmulas predictivas en mujeres con grados de obesidad I a III. Nutr Hosp. 2013 Abr; 28(2): p. 357-364. DOI: https://doi.org/10.3305/ nh.2013.28.2.6188
Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007 Ago; 22(4): p. 377-388. DOI: https://doi. org/10.1177/0115426507022004377
Kennedy S, Ryan L, Fraser A, Clegg ME. Comparison of the GEM and the ECAL indirect calorimeters against the Deltatrac for measures of RMR and diet-induced thermogenesis. J Nutr Sci. 2014; 3: p. e52. DOI: https:// doi.org/10.1017/jns.2014.58
Frankenfield DC, Ashcraft CM. Toward the Development of Predictive Equations for Resting Metabolic Rate in Acutely Ill Spontaneously Breathing Patients. JPEN J Parenter Enteral Nutr. 2016 Sep; 41(7): p. 1155-1161. DOI: https://doi.org/10.1177/0148607116657647
Frankenfield DC, Coleman A. An evaluation of a handheld indirect calorimeter against a standard calorimeter in obese and nonobese adults. JPEN J Parenter Enteral Nutr. 2013 Sep; 37(5): p. 652-658. DOI: https://doi.org/10.1177/0148607112473340
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenber P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis-- part I: review of principles and methods. Clin Nutr. 2004 Oct; 23(5): p. 1226-1243. DOI: https://doi.org/10.1016/j. clnu.2004.06.004
Zanella P, Ávila C, de Souza C. Estimating Resting Energy Expenditure by Different Methods as Compared With Indirect Calorimetry for Patients With Pulmonary Hypertension. Nutr Clin Pract. 2018 Abr; 33(2): p. 217- 223. DOI: https://doi.org/10.1177/0884533617727731
Frankenfield DC, Rowe WA, Smith JS, Cooney RN. Validation of several established equations for resting metabolic rate in obese and nonobese people. J Am Diet Assoc. 2003 Sep; 103(9): p. 1152-1159. DOI: https://doi. org/10.1053/jada.2003.50575
Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Ago; 109: p. 1-9.
Cooper JA, Watras AC, O’Brien MJ, Luke A, Dobratz JR, Earthman CP, et al. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J Am Diet Assoc. 2009 Ene; 109(1): p. 128-132. DOI: https://doi.org/10.1016/j.jada.2008.10.004
Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci USA. 1918 Dic; 4(12): p. 370-373
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990 Feb; 51(2): p. 241-247. DOI: https://doi. org/10.1093/ajcn/51.2.241
Energy and protein requirements. Report of a joint FAO/ WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985 Oct; 724: p. 1-206.
Valencia ME. Energía. In Bourges H, Casanueva E, Rosado J. Recomendaciones de Ingestión de Nutrimentos para la Población Mexicana: bases fisiológicas. México: Editorial Médica Panamericana; 2009.
Sheiner L, Beal S. Some suggestions for measuring prediction performance. J Pharmacokinet Biopharm. 1981 Abr; 9: p. 503-512. DOI: https://doi.org/10.1007/ BF01062337
Frankenfield D, Coleman A, Alam S, Cooney RN. Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN J Parenter Enteral Nutr. 2009 Ene-Feb; 33: p. 27-36. DOI: https://doi.org/10.1016/j. jada.2005.02.005
Menditto A, Patriarca M, Magnusson B. Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur. 2007 Oct; 12(1): p. 45–47. DOI: https://doi. org/10.1007/s00769-006-0191-z
Walker RN, Heuberger R. Predictive equations for energy needs for the critically ill. Respir Care. 2009; 54: p. 509–52
Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005 May; 105(5): p. 775-789. DOI: https://doi.org/10.1177/0148607108322399
Valencia ME, Moya SY, McNeill G, Haggarty P. Basal metabolic rate and body fatness of adult men in northern Mexico. Eur J Clin Nutr. 1994 Mar; 48(3): p. 205-211.
Parra A, Pérez-Lizaur A. Comparación de la estimación del gasto energético basal por cuatro ecuaciones versus calorimetría indirecta en mujeres con peso normal, sobrepeso y obesidad. 2012 Apr-Jun; 20(2): p. 63-66.
Korth O, Bosy-Westphal A, Zschoche P, Glüer CC, Heller M, Müller MJ. Influence of methods used in body composition analysis on the prediction of resting energy expenditure. Eur J Clin Nutr. 2007 May; 61(5): p. 582- 589. DOI: https://doi.org/10.1038/sj.ejcn.1602556
Rao ZY, Wu XT, Liang BM, Wang MY, Hu W. Comparison of five equations for estimating resting energy expenditure in Chinese young, normal weight healthy adults. Eur J Med Res. 2012 Sep; 17: p. 26. DOI: https://doi.org/10.1186/2047-783X-17-26
Weijs PJ. Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18-65 y. Am J Clin Nutr. 2008 Oct; 88(4): p. 959-970. DOI: https://doi. org/10.1093/ajcn/88.4.959
Quiroz G, Serralde A, Saldaña M, Gulias A, Guevara M. Validating an energy expenditure prediction equation in overweight and obese Mexican patients. Nutr Hosp. 2014 Oct; 30(4): p. 749-755. DOI: https://doi.org/10.3305/ nh.2014.30.4.7639
Melanson EL, Coelho LB, Tran ZV, Haugen HA, Kearney JT, Hill JO. Validation of the BodyGem handheld calorimeter. Int J Obesity. 2004 Oct; 12: p. 1479- 1484. DOI: https://doi.org/10.1038/sj.ijo.0802643
Alam DS, Hulshof PJM, Roordink D, Meltzer M, Salam MM, van Raaij J. Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: comparison of measurements obtained by Med Gem and by Deltatrac device. Eur J Clin Nutr. 2005 May; 59: p. 651-657. DOI: https://doi.org/10.1038/ sj.ejcn.1602122
Fields DAKJT, Copeland KC. MedGem hand-held indirect calorimeter is valid for resting energy expenditure measurement in health children. Obesity. 2006 Oct; 14: p. 1755-1761. DOI: https://doi.org/10.1038/oby.2006.202
Compher C, Hise M, Sternber A, Kinosian BP. Comparision between MedGem and Deltatrac resting metabolic rate measurements. Eur J Clin Nutr. 2005 Oct; 59: p. 1136-1141. DOI: https://doi.org/10.1016/j. jada.2007.12.012
Hlynsky J, Birmingham CL, Johnston M, Gritzner S. The agreement between the MedGem indirect calorimeter and a standard indirect calorimeter in anorexia nervosa. Eating Weight Disord. 2005 Dic; 10: p. e83-e87. DOI: https://doi.org/10.1038/sj.ejcn.1602223
Nieman , DC , Trone GA, Austin MD. A new handheld device for measuring resting metabolic rate and oxygen consumption. J Am Diet Assoc. 2003 May; 103: p. 588- 593. DOI: https://doi.org/10.1053/jada.2003.50116
St.-Onge MP, Rubiano F, Jones A, Heymsfield SB. A new hand-held indirect calorimeter to measure post-prandial energy expediture. Obesity Res. 2004 Abr; 12: p. 704- 709. DOI: https://doi.org/10.1038/oby.2004.82
Stewart C, Goody CM, Branson R. Comparison of two systems of measuring energy expediture. JPEN Parent Enteral Nutr. 2005 May-Jun; 29: p. 212-217. DOI: https://doi.org/10.1177/0148607105029003212
Froehle AW. Climate variables as predictors of basal metabolic rate: new equations. Am J Hum Biol. 2008 May; 20(5): p. 510-529. DOI: https://doi.org/10.1002/ ajhb.20769