2019, Number 1
<< Back Next >>
Revista Cubana de Informática Médica 2019; 11 (1)
Diagnosis of the hypertension risk in children applying neurofuzzy systems
Morales HA, Casas CG, González REF
Language: Spanish
References: 20
Page: 33-46
PDF size: 716.60 Kb.
ABSTRACT
The prevention of arterial hypertension is not always transferred to the pediatric age and many of the classification algorithms applied to its diagnosis do not offer relevant information. The aim of this paper is to diagnose the risk of hypertension in children using neurofuzzy systems. Three neurofuzzy systems were applied to the diagnosis of this disease and the experimental data were obtained by the PROCDEC project of schoolchildren in Santa Clara, Cuba. Twenty-four variables were analysed in 624 children from 8 to 11 years old, classified as normotensive and at risk of suffering hypertension. After applying the neurofuzzy systems of study, the performance of each one of them was evaluated and the rules generated during the training of the best were analysed. It was determined that the NSLV algorithm provides a set of rules that facilitate the diagnosis of high blood pressure risk in children.
REFERENCES
Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood pressure. 2013;22(4):193-278.
Lurbe E, Cifkova R, Cruickshank JK, Dillon MJ, Ferreira I, Invitti C, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. Journal of hypertension. 2009;27(9):1719-42.
Santi M, Simonetti BG, Leoni-Foglia CF, Bianchetti MG, Simonetti GD. Arterial hypertension in children. Current opinion in cardiology. 2015;30(4):403-10.
Rosas-Peralta M, Medina-Concebida LE, Borrayo-Sánchez G, Madrid-Miller A, Ramírez-Arias E, Pérez-Rodríguez G. Hipertensión arterial sistémica en el niño y adolescente. Revista Médica del Instituto Mexicano del Seguro Social. 2016;54(1).
Sans S, Fitzgerald AP, Royo D, Conroy R, Graham I. Calibración de la tabla SCORE de riesgo cardiovascular para España. Revista española de cardiología. 2007;60(5):476-85.
Das S, Ghosh PK, Kar S, editors. Hypertension diagnosis: a comparative study using fuzzy expert system and neuro fuzzy system. Fuzzy Systems (FUZZ), 2013 IEEE International Conference on; 2013: IEEE.
Smith S. A learning system based on genetic algorithms. Ph D Dissertation (Computer Science), Univ of Pittsburgh. 1980.
Jin Y. Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems. 2000;8(2):212-21.
Abrishami Z, Tabatabaee H. Design of a fuzzy expert system and a multi-layer neural network system for diagnosis of hypertension. Bull Environ Pharmacol Life Sci. 2015;4:138-45.
Kaur R, Kaur A, editors. Hypertension diagnosis using fuzzy expert system. International Journal of Engineering Research and Applications (IJERA) National Conference on Advances in Engineering and Technology, AET-29th March; 2014.
Kaur A, Bhardwaj A, Been UAH. Genetic neuro fuzzy system for hypertension diagnosis. Heart. 2014;19:25.
Cabrera L, Morales A, Casas G, Denoda L, González E. Multiclasificador para diagnosticar hipertensión arterial infantil combinando algoritmos genéticos con medidas de diversidad. In: Carlos Narciso Bouza Herrera JFGR, María del Mar Rueda García, Agustin Santiago Moreno, editor. Experiencias en la modelación de la toma de decisiones en la salud humana, medio ambiente y desarrollo humano2015. p. 208-25.
Triguero I, González S, Moyano JM, García S, Alcalá-Fdez J, Luengo J, et al. KEEL 3.0: an open source software for multi-stage analysis in data mining. International Journal of Computational Intelligence Systems. 2017;10(1):1238-49.
Ishibuchi H, Nakashima T, Murata T. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 1999;29(5):601-18.
Booker LB, Goldberg DE, Holland JH. Classifier systems and genetic algorithms. Artificial intelligence. 1989;40(1-3):235-82.
Ishibuchi H, Yamamoto T, Nakashima T. Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2005;35(2):359-65.
Gonzalez A, Perez R. A learning system of fuzzy control rules based on genetic algorithms. Genetic algorithms and soft computing, Physica-Verlag. 1996:202-25.
González A, Pérez R, Verdegay JL. Learning the structure of a fuzzy rule: a genetic approach. Fuzzy Systems and Artificial Intelligence. 1994;3(1):57-70.
González A, Pérez R. Improving the genetic algorithm of SLAVE. Mathware & Soft Computing. 2009;16(1):59-70.
Yevtushenko SA. System of data analysis “Concept Explorer”. Proceedings of the 7th national conference on Artificial Intelligence KII2000.