2019, Number 3
<< Back Next >>
Rev Mex Neuroci 2019; 20 (3)
The effect of stress on acquisition and consolidation of object recognition memory in rats
González-López MR, García-Saldívar NL, Arriaga-Ramírez JC, Cruz-Morales SE
Language: Spanish
References: 51
Page: 141-148
PDF size: 219.31 Kb.
ABSTRACT
Introduction: Many tasks used in the evaluation of learning and memory have stressful components. This makes it difficult
to interpret the effects of stress on improvement, impairment or no effect on memory. It is considered that the object recognition
task (RO) contain no stressful stimuli; therefore, it can be useful in the study of the effect of stress on memory.
Objective: To evaluate the effect of restraint stress (R) (15 min) on acquisition and consolidation of memory in RO. In addition, the possible activation of the hypothalamic-pituitary-adrenal axis was evaluated as a consequence of the training
in RO.
Methods: Male Wistar rats assigned to four groups carried of the task of RO: two with R pre or post-training (R+RO,
RO+R), another received corticosterone (C) intraperitoneally pre-training (C+RO) and one RO only (RO). Thereafter, they
were immediately sacrificed and plasma C was quantified. To exclude the stressor effect of training in RO, C was measured
in four groups: one intact (I), two trained in RO sacrificed 0 or 24 h later (ERO-0 and ERO-24) and another restricted 15
min (R15), sacrificed immediately after.
Results: The R impaired the acquisition in the groups R+RO and RO+R; the concentration
of C increased in R+RO and C+RO. In ERO-0 and R15, the plasma C increased.
Conclusions: The pre-training
R impaired memory. Training in RO increased the plasma C similar to R15 indicating the stressful nature of the task. The C
injection did not modify memory.
REFERENCES
Bisaz R, Conboy L, Sandi C. Learning under stress: A role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem. 2009;91:333-42.
Li S, Fan YX, Wang W, Tang YY. Effects of acute restraint stress on different components of memory as assessed by object-recognition and object-location tasks in mice. Behav Brain Res. 2012;227(1):199-207.
Wirth M. Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory. Adapt Human Behav Physio. 2015;1(2):177‑201.
Corbett B, Winberg L, Duarte A. The effect of mild acute stress during memory consolidation on emotional recognition memory. Neurobiol Learn Mem. 2017 145:33-44.
Butler RK, Oliver EM, Sharko AC, Parrilla-Carrero J, Kaigler KF, Fadel JR, et al. Activation of corticotrophin releasing factor-containing neurons in the rat central amygdale and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors. Behav Brain Res. 2016; 304:92-101.
Ness D, Calabrese P. Stress effects on multiple memory system interactions. Neural Plast. 2016;2016:4932128.
Howland JG, Cazakoff BN. Effects of acute stress and GluN2B-containing NMDA receptor antagonism on object and object–place recognition memory. Neurobio Learn Mem. 2010;93:261-7.
Cazakoff BN, Johnson KJ, Howland JG. Converging effects of acute stress on spatial and recognition memory in rodents: A review of recent behavioural and pharmacological findings. Pro Neuropsychopharmacol Biol Psychiatry. 2010;34:733-41.
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10(6):459-66.
Sardari M, Rezayof A, Khodagholi F. Hippocampal signaling pathways are involved in stress-induced impairment of memory formation in rats. Brain Res. 2015;1625:54-63.
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: Rapid, slow and chronic modes. Pharmacol Rev. 2012;64:901-38.
Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603-21.
Wolf OT. Stress and memory retrieval: mechanisms and consequences. Behav Sci. 2017;14:40-6.
Vargas-López V, Torres-Berrio A, González-Martínez L, Múnera A, Lamprea MR. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task. Behav Brain Res. 2015; 291:60-6.
Barsegyan A, Mackenzie SM, Kurose BD, McGaugh JL, Roozendaal B. Glucocorticoids in the prefrontal cortex enhances memory consolidation and impair working memory by a common neural mechanism. Proc Natl Acad Sci U S A. 2010;107(38):16655-60.
Atsak P, Guenzel FM, Kantar-Gok D, Zalachoras I, Yargicoglu P, Meijer OC, et al. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory. Psychoneuroendocrinology. 2016;67:207‑15.
Roozendaal B. Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem. 2002;78:578-95.
Sadowski RN, Jackson GR, Wieczorek LA, Gold PE. Effects of stress, corticosterone, and epinephrine administration on learning in place and response tasks. Behav Brain Res. 2009;205:19-25.
Yang Ch, Liu J, Chai B, Fang Q, Chai N, Zhao LY, et al. Stress within a restricted time window selectively affects the persistence of long-term memory. PLoS One. 2013;8:e59075.
Prado-Alcalá RA, Cruz-Morales SE, López-Miro FA. Differential effects of cholinergic blockade of anterior and posterior caudate nucleus on avoidance behaviors. Neurosci Lett. 1980;18:339-45.
Prado-Alcalá RA. Is cholinergic activity of the caudate nucleus involved in memory? Life Sci. 1985;37:2135-42.
García-Saldívar NL. Efecto de agonistas y antagonistas GABAérgicos sobre la amnesia inducida por escopolamina, en ratas sometidas a un condicionamiento de evitación pasiva en condiciones de bajo reforzamiento [Tesis de Maestría en Internet]. México: Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Psicología; 2002. Disponible en: http://132.248.9.195/pdtestdf/0302175/Index.html
González-López MRA, García-Saldívar NL, Gómez-Romero JG, Arriaga- Ramírez PA, Cruz-Morales SE. Modulación de la actividad GABAérgica del estriado sobre la amnesia inducida por escopolamina. Rev Mex Psicol. 2003;20:283-9.
Cruz-Morales SE, Durán-Arévalo M, Díaz del Guante MA, Quirarte G, Prado-Alcalá RA. A threshold for the protective effect of over-reinforced passive avoidance against scopolamine-induced amnesia. Behav Neural Biol. 1992;57:256-9.
Veloz-Gómez L. Interacción colinérgica y GABAérgica en una tarea de evitación inhibitoria entrenada con bajas intensidades [Tesis de Licenciatura en Internet]. México: Universidad Nacional Autónoma de México; 1999. Disponible en: http://132.248.9.195/pd1999/271194/Index.html
Cruz-Morales SE. Interacción de los sistemas colinérgico y GABAérgico en la consolidación de una respuesta de evitación inhibitoria [Tesis de Doctorado en Internet] México: Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México; 1992. Disponible en: http://132.248.9.195/pmig2016/0183543/Index.html
García-Saldívar NL, González-López MR, Monroy J, Dominguez R, Cruz-Morales SE. Restriction stress modifies monoamines activity in the prefrontal cortex of rats submitted to an inhibitory avoidance task. Annual Meeting SfN 2014; Sn. Diego, Cal., USA, 628.26. Abstract.
Armario A, Escorihuela RM, Nadal. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci Biobehav Rev. 2008;32:1121-35.
Cruz-Morales SE, García-Saldívar NL, González-López MR, Castillo-Roberto G, Monroy J, Domínguez R. Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum. Behav Brain Res. 2008;195:187-91.
García-Saldívar NL. Efecto del estrés agudo por restricción sobre la memoria y la ansiedad: participación de la noradrenalina en la CPF y núcleo estriado [Tesis de Doctorado en Internet]. México: Programa de Maestría y Doctorado en Psicología, Universidad Nacional Autónoma de México; 2017. Disponible en: http://132.248.9.195/ptd2017/febrero/ 070501788/Index.html
Favila GP. Efectos de la administración de corticosterona e inducción de estrés por restricción en una prueba de LET sobre la consolidación y recuperación de la memoria [Tesis de Licenciatura en Internet]. México: Facultad de Psicología, Universidad Nacional Autónoma de México; 2015. Disponible en: http://132.248.9.195/ptd/2015/agosto/307075374/ Index.html
Sandi C, Pinelo-Nava MT. Stress and memory: Behavioral effects and neurobiological mechanisms. Neural Plast. 2007;2007:78970.
Graeff FG, Zangrossi Jr. H. The hypothalamic-pituitary-adrenal axis in anxiety and panic. Psychol Neurosci. 2010;3(1):3-8.
Cohen SJ, Stackman Jr RW. Assessing rodent hippocampal involvement in the novel object recognition task: A review. Behav Brain Res. 2015; 285:105-17.
Nava-Mesa MO, Lamprea MR, Múnera A. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation. Neurobiol Learn Mem. 2013; 106:185-92.
Jurado-Berbel P, Costa-Miserachs D, Torras-Garcia M, Coll-Andreu M, Portell-Cortés I. Standard object recognition memory and “what” and “where” components: Improvement by post-training epinephine in highly habituated rats. Behav Brain Res. 2010;207:44-50.
Luine, V. Recognition memory task in neuroendocrine research. Behav Brain Res. 2015;285:158-64.
Observer, Software de dominio público del Laboratorio de Psicobiología de la Universidad de Säo Paulo, Brazil.
Ennaceur A. One trial object recognition in rats and mice: Methodological and theoretical issues. Behav Brain Res. 2010;215:244-54.
Zhao X Li Y, Peng T, Seese RR, Wang Z. Stress impairs consolidation of recognition memory after blocking drug memory reconsolidation. Neurosci Lett. 2011;501:50-4.
Baker KB, Kim JJ. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn Mem. 2002;9:58-65.
González-López MR, García-Saldívar NL, González-Sánchez DJ, Gascón- Enríquez O, Romero-Guadiana JC, Cruz-Morales SE. Efectos del estrés agudo sobre la memoria declarativa y la ansiedad en ratas: efectos de género 2017; LX Congreso Nacional de Ciencias Fisiológicas, Nuevo León, Monterrey, México Abstract.
Sutcliffe JS, Marshall KM, Neill JC. Influence of gender on working and spatial memory in the novel object recognition task in the rat. Behav Brain Res. 2007;177:117-25.
Harro H. Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behav Brain Res. 2018;352:81-93.
Lamprea MR, Cardenas FP, Setem J, Morato S. Thigmotatic responses in an open-field. Braz J Med Biol Res. 2008;41:135-40.
Woodson JC, Macintosh D, Fleshner M, Diamond DM. Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn Mem. 2003;10:326-36.
Harris AP, Holmes MC, de Kloet ER, Chapman KE, Seckle JR. Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology. 2013;38:648-58.
Schulz K, Korz V. Emotional and cognitive information processing: Relations to behavioral performance and hippocampal long-term potentiation in vivo during a spatial water maze training in rats. Learn Mem. 2010; 17:552-60.
Muñoz-Abellán C, Rabasa, Daviu N, Nadal R, Armario A. Behavioral and endocrine consequences of simultaneous exposure to two different stressors in rats: Interaction or independence? Plos One. 2011;6(6):e21426.
Bevins RA, Besheer J, Palmatie MI, Jensen HC, Pickett KS, Eurek S. Novel-object place conditioning: Behavioral and dopaminergic processes in expression of novelty reward. Behav Brain Res. 2002;129:41-50.
Okuda S, Roozendaal B, McGaugh JL. Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proc Natl Acad Sci U S A. 2004;101(3):853-8.