2019, Number 3
<< Back Next >>
salud publica mex 2019; 61 (3)
Squamous cell lung cancer: genomic evolution and personalized therapy
Cardona AF, Ricaurte L, Zatarain-Barrón ZL, Arrieta O
Language: English
References: 86
Page: 329-338
PDF size: 428.34 Kb.
ABSTRACT
Objective. To review the state-of-the-art in relation to the
current information on squamous cell lung cancer (SCLC). We
describe the genetic anomalies reported, their effect, and finally
the most promising therapeutic agents.
Materials and
methods. We reviewed published articles in peer-reviewed
journals as well as current treatment guidelines from local
and international resources.
Results. SCLC represents a
smaller proportion of the global burden of disease for lung
cancer compared to its more frequent presentation, the adenocarcinoma.
However, more than 400 000 cases are reported
annually, a substantial population for whom therapeutic options
are scarce and with limited efficacy. Several groups have
been given the task of elucidating the mechanisms that lead
to the development of SCLC, including molecular anomalies
that can be used as targets for drug design.
Conclusion.
There are potential therapeutic targets for SCLC, which must
be studied in clinical trials for validation.
REFERENCES
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. https://doi.org/10.3322/caac.20073
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545- 602. https://doi.org/10.1016/S0140-6736(16)31678-6
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. https:// doi.org/10.1002/ijc.29210
Gandara DR, Hammerman PS, Sos ML, Lara PN Jr, Hirsch FR. Squamous cell lung cancer: from tumor genomics to cancer therapeutics. Clin Cancer Res. 2015;21(10):2236-43. https://doi.org/10.1158/1078-0432. CCR-14-3039
Khuder SA, Mutgi AB. Effect of smoking cessation on major histologic types of lung cancer. Chest. 2001;120(5):1577-83. https://doi.org/10.1378/ chest.120.5.1577
Burns DM, Anderson CM, Gray N. Do changes in cigarette design influence the rise in adenocarcinoma of the lung? Cancer Causes Control. 2011;22(1):13-22. https://doi.org/10.1007/s10552-010-9660-0
Burns DM, Anderson CM, Gray N. Has the lung cancer risk from smoking increased over the last fifty years? Cancer Causes Control. 2011;22(3):389-97. https://doi.org/10.1007/s10552-010-9708-1
Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-25. https://doi.org/10.1038/nature11404
Sousa V, Espirito-Santo J, Silva M, Cabral T, Alarcao AM, Gomes A, et al. EGFR/erB-1, HER2/erB-2, CK7, LP34, Ki67 and P53 expression in preneoplastic lesions of bronchial epithelium: an immunohistochemical and genetic study. Virchows Arch. 2011;458(5):571-81. https://doi.org/10.1007/ s00428-011-1062-5
Lee JJ, Liu D, Lee JS, Kurie JM, Khuri FR, Ibarguen H, et al. Long-term impact of smoking on lung epithelial proliferation in current and former smokers. J Natl Cancer Inst. 2001;93(14):1081-8. https://doi.org/10.1093/ jnci/93.14.1081
Massion PP, Taflan PM, Shyr Y, Rahman SM, Yildiz P, Shakthour B, et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med. 2004;170(10):1088-94. https://doi.org/10.1164/rccm.200404-487OC
Shabnam MS, Srinivasan R, Wali A, Majumdar S, Joshi K, Behera D. Expression of p53 protein and the apoptotic regulatory molecules Bcl-2, Bcl- XL, and Bax in locally advanced squamous cell carcinoma of the lung. Lung Cancer. 2004;45(2):181-8. https://doi.org/10.1016/j.lungcan.2004.01.021
Kohno H, Hiroshima K, Toyozaki T, Fujisawa T, Ohwada H. p53 mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions in patients with nonsmall cell lung carcinoma. Cancer. 1999;85(2):341-7. https://doi.org/10.1002/(SICI)1097-0142(19990115)85:2<341::AIDCNCR11> 3.0.CO;2-S
Boyle JO, Lonardo F, Chang JH, Klimstra D, Rusch V, Dmitrovsky E. Multiple high-grade bronchial dysplasia and squamous cell carcinoma: concordant and discordant mutations. Clin Cancer Res. 2001;7(2):259-66.
Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63(21):7113-21.
Brambilla E, Gazzeri S, Lantuejoul S, Coll JL, Moro D, Negoescu A, et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res. 1998;4(7):1609-18.
Lamy A, Sesboue R, Bourguignon J, Dautreaux B, Metayer J, Frebourg T, et al. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer. 2002;100(2):189-93. https:// doi.org/10.1002/ijc.10474
Brambilla E, Gazzeri S, Moro D, Lantuejoul S, Veyrenc S, Brambilla C. Alterations of Rb pathway (Rb-p16INK4-cyclin D1) in preinvasive bronchial lesions. Clin Cancer Res. 1999;5(2):243-50.
Lantuejoul S, Salameire D, Salon C, Brambilla E. Pulmonary preneoplasia-- sequential molecular carcinogenetic events. Histopathology. 2009;54(1):43-54. https://doi.org/10.1111/j.1365-2559.2008.03182.x
Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58(22):5032-7.
Capkova L, Kalinova M, Krskova L, Kodetova D, Petrik F, Trefny M, et al. Loss of heterozygosity and human telomerase reverse transcriptase (hTERT) expression in bronchial mucosa of heavy smokers. Cancer. 2007;109(11):2299-307. https://doi.org/10.1002/cncr.22683
Shibuya K, Fujisawa T, Hoshino H, Baba M, Saitoh Y, Iizasa T, et al. Increased telomerase activity and elevated hTERT mRNA expression during multistage carcinogenesis of squamous cell carcinoma of the lung. Cancer. 2001;92(4):849-55. https://doi.org/10.1002/1097- 0142(20010815)92:4<849::AID-CNCR1392>3.0.CO;2-4
Zalewska-Ziob M, Dobija-Kubica K, Biernacki K, Adamek B, Kasperczyk J, Brulinski K, et al. Clinical and prognostic value of hTERT mRNA expression in patients with non-small-cell lung cancer. Acta Biochim Pol. 2017;64(4):641-6. https://doi.org/10.18388/abp.2017_1618
Fontanini G, Calcinai A, Boldrini L, Lucchi M, Mussi A, Angeletti CA, et al. Modulation of neoangiogenesis in bronchial preneoplastic lesions. Oncology reports. 1999;6(4):813-7. https://doi.org/10.3892/or.6.4.813
Merrick DT, Haney J, Petrunich S, Sugita M, Miller YE, Keith RL, et al. Overexpression of vascular endothelial growth factor and its receptors in bronchial dysplasia demonstrated by quantitative RT-PCR analysis. Lung Cancer. 2005;48(1):31-45. https://doi.org/10.1016/j.lungcan.2004.07.049
Mascaux C, Martin B, Verdebout JM, Ninane V, Sculier JP. COX-2 expression during early lung squamous cell carcinoma oncogenesis. Eur Respir J. 2005;26(2):198-203. https://doi.org/10.1183/09031936.05.00001405
Cavarga I, Kocan P, Boor A, Belak J, Zak V, Kluchova Z, et al. Immunohistochemical markers of proliferation and vascularisation in preneoplastic bronchial lesions and invasive non-small cell lung cancer. Neoplasma. 2009;56(5):414-21. https://doi.org/10.4149/neo_2009_05_414
Galateau-Salle FB, Luna RE, Horiba K, Sheppard MN, Hayashi T, Fleming MV, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Human Pathol. 2000;31(3):296-305. https://doi.org/10.1016/S0046-8177(00)80242-7
Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ, et al. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107(11):2637-46. https://doi. org/10.1002/cncr.22315
Cappello F, Di Stefano A, David S, Rappa F, Anzalone R, La Rocca G, et al. Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer. 2006;107(10):2417-24. https://doi.org/10.1002/cncr.22265
Romeo MS, Sokolova IA, Morrison LE, Zeng C, Baron AE, Hirsch FR, et al. Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn. 2003;5(2):103-12. https://doi.org/10.1016/S1525-1578(10)60459-X
Hilbe W, Auberger J, Dirnhofer S, Schmid T, Erdel M, Duba HC. High rate of molecular alteration in histologically tumour-free bronchial epithelium of NSCLC patients detected by multicolour fluorescence in situ hybridisation. Oncol Rep. 2006;15(5):1233-40. https://doi.org/10.3892/or.15.5.1233
Woenckhaus M, Grepmeier U, Wild PJ, Merk J, Pfeifer M, Woenckhaus U, et al. Multitarget FISH and LOH analyses at chromosome 3p in nonsmall cell lung cancer and adjacent bronchial epithelium. Am J Clin Pathol. 2005;123(5):752-61. https://doi.org/10.1309/C4BK-7GQV-8E5X-U2TL
Dong XY, Lu YJ, Tong T, Wang YJ, Guo SP, Bai JF, et al. Molecular cytogenetic alterations in the early stage at human bronchial epithelial cell carcinogenesis. J Cell Biochem Suppl. 1997;28-29:74-80. https://doi. org/10.1002/(SICI)1097-4644(1997)28/29+<74::AID-JCB8>3.0.CO;2-T
Jeanmart M, Lantuejoul S, Fievet F, Moro D, Sturm N, Brambilla C, et al. Value of immunohistochemical markers in preinvasive bronchial lesions in risk assessment of lung cancer. Clin Cancer Res. 2003;9(6):2195-203.
Endo C, Sato M, Fujimura S, Sakurada A, Aikawa H, Takahashi S, et al. Allelic loss on 17p13 (TP53) and allelic loss on 3p21 in early squamous cell carcinoma of the lung. Surg Today. 2000;30(8):695-9. https://doi. org/10.1007/s005950070079
Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene. 1999;18(3):643-50. https://doi.org/10.1038/sj.onc.1202349
Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010;465(7297):473-7. https://doi.org/10.1038/nature09004
Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121-34. https://doi.org/10.1016/j. cell.2012.08.024
Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107-20. https://doi.org/10.1016/j. cell.2012.08.029
Clinical Lung Cancer Genome Project, Network Genomic Medicine. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153. https://doi.org/10.1126/scitranslmed.3006802
Liu L, Liu J, Shao D, Deng Q, Tang H, Liu Z, et al. Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients. Cancer Sci. 2017;108(12):2487-94. https:// doi.org/10.1111/cas.13410
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. https://doi.org/10.1126/science.1208130
Kim Y, Hammerman PS, Kim J, Yoon JA, Lee Y, Sun JM et al. Integrative and comparative genomic analysis of lung squamouscell carcionomas in East Asian Patients. J Clin Oncol. 2014;32(2):121-8. https://doi. org/10.1200/JCO.2013.50.8556
Paik PK, Hasanovic A, Wang L, Rekhtman N, Ladanyi M, Kris MG. Multiplex testing for driver mutations in squamous cell carcinomas of the lung. J Clin Oncol. 2012;15(suppl):7505. https://doi.org/10.1200/ jco.2012.30.15_suppl.7505
Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol. 2012;30(17):2055-62. https://doi.org/10.1200/ JCO.2011.39.5848
Yoo SH, Park YS, Kim HR, Sung SW, Kim JH, Shim YS, et al. Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer. 2003;42(2):195-202. https://doi. org/10.1016/S0169-5002(03)00287-3
Chen Y, Li J, Chen S, Zhang Y, Hu Y, Zhang G, et al. Nab-paclitaxel in combination with cisplatin versus docetaxel plus cisplatin as first-line therapy in non-small cell lung Cancer. Sci Rep. 2017;7(1):10760. https://doi. org/10.1038/s41598-017-11404-9
Miyauchi E, Inoue A, Usui K, Sugawara S, Maemondo M, Saito H, et al. Phase II study of modified carboplatin plus weekly nab-paclitaxel in elderly patients with non-small cell lung cancer: North Japan lung cancer study group trial 1301. Oncologist. 2017;22(6):640-e59. https://doi.org/10.1634/ theoncologist.2017-0059
Shukuya T, Yamanaka T, Seto T, Daga H, Goto K, Saka H, et al. Nedaplatin plus docetaxel versus cisplatin plus docetaxel for advanced or relapsed squamous cell carcinoma of the lung (WJOG5208L): a randomised, open-label, phase 3 trial. Lancet Oncol. 2015;16(16):1630-8. https://doi. org/10.1016/S1470-2045(15)00305-8
Pirker R, Pereira JR, Szczesna A, von Pawel J, Krzakowski M, Ramlau R, et al. Cetuximab plus chemotherapy in patients with advanced non-smallcell lung cancer (FLEX): an open-label randomised phase III trial. Lancet. 2009;373(9674):1525-31. https://doi.org/10.1016/S0140-6736(09)60569-9
Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012;13(1):33-42. https://doi.org/10.1016/S1470-2045(11)70318-7
Thatcher N, Hirsch FR, Luft AV, Szczesna A, Ciuleanu TE, Dediu M, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous nonsmall- cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2015;16(7):763-74. https://doi.org/10.1016/ S1470-2045(15)00021-2
Genova C, Socinski MA, Hozak RR, Mi G, Kurek R, Shahidi J, et al. EGFR gene copy number by FISH may predict outcome of necitumumab in squamous lung carcinomas: analysis from the SQUIRE Study. J Thorac Oncol. 2018;13(2):228-36. https://doi.org/10.1016/j.jtho.2017.11.109
Paz-Ares L, Socinski MA, Shahidi J, Hozak RR, Soldatenkova V, Kurek R, et al. Correlation of EGFR-expression with safety and efficacy outcomes in SQUIRE: a randomized, multicenter, open-label, phase III study of gemcitabine-cisplatin plus necitumumab versus gemcitabine-cisplatin alone in the first-line treatment of patients with stage IV squamous non-smallcell lung cancer. Ann Oncol. 2016;27(8):1573-9. https://doi.org/10.1093/ annonc/mdw214
Bonomi PD, Gandara D, Hirsch FR, Kerr KM, Obasaju C, Paz-Ares L, et al. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer. Ann Oncol. 2018;29(8):1701-9. https://doi.org/10.1093/annonc/mdy196
Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v1-27. https://doi.org/10.1093/annonc/mdw326
Soria JC, Felip E, Cobo M, Lu S, Syrigos K, Lee KH, et al. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2015;16(8):897-907. https://doi. org/10.1016/S1470-2045(15)00006-6
Gadgeel S, Goss G, Soria JC, Felip E, Georgoulias V, Lu S, et al. Evaluation of the VeriStrat((R)) serum protein test in patients with advanced squamous cell carcinoma of the lung treated with second-line afatinib or erlotinib in the phase III LUX-Lung 8 study. Lung Cancer. 2017;109:101-8. https://doi.org/10.1016/j.lungcan.2017.05.010
Goss GD, Felip E, Cobo M, Lu S, Syrigos K, Lee KH, et al. Association of ERBB mutations with clinical outcomes of afatinib- or erlotinib-treated patients with lung squamous cell carcinoma: secondary analysis of the LUX-Lung 8 randomized clinical trial. JAMA Oncol. 2018;4(9):1189-97. https://doi.org/10.1001/jamaoncol.2018.0775
Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, doubleblind, randomised phase 3 trial. Lancet. 2014;384(9944):665-73. https://doi. org/10.1016/S0140-6736(14)60845-X
Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116-29. https://doi. org/10.1038/nrc2780
Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93. https://doi.org/10.1126/scitranslmed.3001451
Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PloS one. 2011;6(6):e20351. https://doi.org/10.1371/journal. pone.0020351
Paik PK, Shen R, Berger MF, Ferry D, Soria JC, Mathewson A, et al. A Phase Ib open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res. 2017;23(18):5366- 73. https://doi.org/10.1158/1078-0432.CCR-17-0645
Aggarwal C, Redman MW, Lara P, Borghaei H, Hoffman P, Bradley J, et al. Phase II study of the FGFR inhibitor AZD4547 in previously treated patients with FGF pathway-activated stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400D. J Clin Oncol. 2017;15(suppl):9055. https://doi.org/10.1200/JCO.2017.35.15_suppl.9055
Hyman D, Tran B, Corral-Jaime J, Garralda E, Machiels JP, Schellens HMJ, et al. Phase Ib study of BGJ398 in combination with BYL719 in patients (pts) with select advanced solid tumors. J Clin Oncol. 2016;34(suppl):2500. https://doi.org/10.1200/JCO.2016.34.15_suppl.2500
Tolcher AW, Papadopoulos KP, Patnaik A, Wilson K, Thayer S, Zanghi J, et al. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann Oncol. 2016;27(3):526-32. https://doi.org/10.1093/annonc/mdv591
Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68(17):6913-21. https://doi.org/10.1158/0008- 5472.CAN-07-5084
Wade JL, Langer C, Redman M, Aggarwal M, Bradley JD, Crawford J, et al. A phase II study of GDC-0032 (taselisib) for previously treated PI3K positive patients with stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400B. J Clin Oncol. 35:15(suppl):9054. https://doi.org/10.1200/JCO.2017.35.15_suppl.9054
Jin G, Kim MJ, Jeon HS, Choi JE, Kim DS, Lee EB, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer. 2010;69(3):279-83. https://doi. org/10.1016/j.lungcan.2009.11.012
Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256-61. https:// doi.org/10.1158/0008-5472.CAN-08-4055
Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016;6(2):202-16. https://doi.org/10.1158/2159-8290.CD-15-0283
Lara PN Jr, Longmate J, Mack PC, Kelly K, Socinski MA, Salgia R, et al. Phase II study of the AKT inhibitor MK-2206 plus erlotinib in patients with advanced non-small cell lung cancer who previously progressed on erlotinib. Clin Cancer Res. 2015;21(19):4321-6. https://doi. org/10.1158/1078-0432.CCR-14-3281
Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042-50. https://doi.org/10.4161/ cbt.8.21.9764
Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835-42. https://doi.org/10.1200/JCO.2009.26.1321
Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798-811. https://doi.org/10.1158/2159-8290.CD-12-0112
Paul I, Savage KI, Blayney JK, Lamers E, Gately K, Kerr K, et al. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1- deficient non-small cell lung cancer. J Pathol. 2011;224(4):564-74. https:// doi.org/10.1002/path.2925
Ramalingam SS, Blais N, Mazieres J, Reck M, Jones CM, Juhasz E, et al. Randomized, placebo-controlled, phase II study of veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 2017;23(8):1937-44. https://doi. org/10.1158/1078-0432.CCR-15-3069
Terai H, Tan L, Beauchamp EM, Hatcher JM, Liu Q, Meyerson M, et al. Characterization of DDR2 inhibitors for the treatment of DDR2 mutated nonsmall cell lung cancer. ACS Chem Biol. 2015;10(12):2687-96. https:// doi.org/10.1021/acschembio.5b00655
Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1(1):78-89. https://doi. org/10.1158/2159-8274.CD-11-0005
Xu C, Buczkowski KA, Zhang Y, Asahina H, Beauchamp EM, Terai H, et al. NSCLC driven by DDR2 mutation is sensitive to dasatinib and JQ1 combination therapy. Mol Cancer Ther. 2015;14(10):2382-9. https://doi. org/10.1158/1535-7163.MCT-15-0077
Chen D, Zhang LQ, Huang JF, Liu K, Chuai ZR, Yang Z, et al. BRAF mutations in patients with non-small cell lung cancer: a systematic review and meta-analysis. PloS one. 2014;9(6):e101354. https://doi.org/10.1371/ journal.pone.0101354
Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29(15):2046-51. https://doi.org/10.1200/ JCO.2010.33.1280
Marchetti A, Felicioni L, Malatesta S, Grazia-Sciarrotta M, Guetti L, Chella A, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574-9. https://doi.org/10.1200/JCO.2011.35.9638
Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland A, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307-16. https://doi.org/10.1016/ S1470-2045(17)30679-4