2019, Number 3
<< Back Next >>
salud publica mex 2019; 61 (3)
Epigenetics in non-small cell lung carcinomas
Peralta-Arrieta I, Armas-López L, Zúñiga J, Ávila-Moreno F
Language: English
References: 73
Page: 318-328
PDF size: 755.69 Kb.
ABSTRACT
Objective. To perform a systematic review of the main epigenetic
aberrations involved in non-small cell lung carcinomas’
(NSCLC) diagnosis, progression, and therapeutics.
Materials
and methods. We performed a systematic review of the
scientific literature on lung cancer epigenetics, focusing on
NSCLC.
Results. Several advances in the molecular study
of classical epigenetic mechanisms and massive studies of lung
cancer epigenome have contributed relevant new evidence
revealing that various molecular complexes are functionally
influencing genetic-epigenetic and transcriptional mechanisms
that promote lung tumorigenesis (initiation, promotion,
and progression), and are also involved in NSCLC therapyresistance
mechanisms.
Conclusion. Several epigenetic
complexes and mechanisms must be analyzed and considered
for the design of new and efficient therapies, which could be
fundamental to develop an integrated knowledge to achieve
a comprehensive lung cancer personalized medicine.
REFERENCES
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer. 1995;75(suppl 1):191-202.
Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, et al. An expression signature as an aid to the histologic classification of non-small cell lung cancer. Clin Cancer Res. 2016;22(19):4880-9. https://doi.org/10.1158/1078-0432.CCR-15-2900
Wang H, Zhang W, Wang K, Li X. Correlation between EML4-ALK, EGFR and clinicopathological features based on IASLC/ATS/ERS classification of lung adenocarcinoma. Medicine. 2018;97(26):e11116. https://doi. org/10.1097/MD.0000000000011116
Zugazagoitia J, Molina-Pinelo S, Lopez-Rios F, Paz-Ares L. Biological therapies in nonsmall cell lung cancer. Eur Respir J. 2017;49(3):1601520. https://doi.org/10.1183/13993003.01520-2016
National Cancer Institute. Cancer.gov [web page] [cited May 3, 2019]. Available from: https://www.cancer.gov/publications/dictionaries/cancerterms/ def/biomarker
Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5:588-99. https://doi.org/10.1038/ncponc1187
Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames S, et al. DNA Methylation Markers and Early Recurrence in Stage I Lung Cancer. N Engl J Med. 2008;358(11):1118-28. https://doi.org/10.1056/ NEJMoa0706550
Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nature Biotechnol. 2010;28(10):1069-78. https://doi. org/10.1038/nbt.1678
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27-36. https://doi.org/10.1093/carcin/bgp220
Mohammad HP, Baylin SB. Linking cell signaling and the epigenetic machinery. Nature Biotechnol. 2010;28:1033-8. https://doi.org/10.1038/ nbt1010-1033
Issa JP, Baylin SB, Belinsky SA. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 1996;56(16):3655-8.
Belinsky SA, Nikula KJ, Baylin SB, Issa JP. Increased cytosine DNAmethyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci. 1996;93(9):4045-50. https://doi.org/10.1073/ pnas.93.9.4045
Swafford DS, Middleton SK, Palmisano WA, Nikula KJ, Tesfaigzi J, Baylin SB, et al. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol. 1997;17(3):1366-74. https://doi.org/10.1128/ MCB.17.3.1366
Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci. 1998;95(20):11891-6. https://doi.org/10.1073/pnas.95.20.11891
Balgkouranidou I, Liloglou T, Lianidou ES. Lung cancer epigenetics: emerging biomarkers. Biomark Med. 2013;7(1):49-58. https://doi. org/10.2217/bmm.12.111
Baylin SB. The cancer epigenome: its origins, contributions to tumorigenesis, and translational implications. Proc Am Thorac Soc. 2012;9(2):64- 5. https://doi.org/10.1513/pats.201201-001MS
Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(1):56-62. https://doi.org/10.1200/JCO.2009.24.9094
Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: A new weapon in the war against cancer. Annu Rev Med. 2016;67(1):73-89. https://doi. org/10.1146/annurev-med-111314-035900
Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res. 2012;2(5):589-97.
Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174(5):1619-28. https://doi.org/10.2353/ajpath.2009.080874
Oike T, Ogiwara H, Amornwichet N, Nakano T, Kohno T. Chromatin- regulating proteins as targets for cancer therapy. J Radiat Res. 2014;55(4):613-28. https://doi.org/10.1093/jrr/rrt227
Tyagi M, Imam N, Verma K, Patel AK. Chromatin remodelers: We are the drivers!! Nucleus. 2016;7(4):388-404. https://doi.org/10.1080/194910 34.2016.1211217
Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 2011;1(7):598-607. https://doi.org/10.1158/2159-8290.CD-11-0214
Soca-Chafre G, Hernandez-Pedro N, Aviles-Salas A, Verson CA, Sanchez KC, Cardona AF, et al. Targeted next generation sequencing identified a high frequency genetic mutated profile in wood smoke exposure-related lung adenocarcinoma patients. Oncotarget. 2018;9(55):30499-512. https:// doi.org/10.18632/oncotarget.25369
Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res. 2003;63(3):560-6.
Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A, et al. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res. 2004;10(13):4314-24. https://doi.org/10.1158/1078-0432.CCR-03-0489
Medina PP, Carretero J, Fraga MF, Esteller M, Sidransky D, Sanchez- Cespedes M. Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes Chromosomes Cancer. 2004;41(2):170-7. https://doi.org/10.1002/gcc.20068
Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K, et al. BRG1, a component of the SWI-SNF complex, Is mutated in multiple human tumor cell lines. Cancer Res. 2000;60(21):6171-7.
Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, Sanchez-Cespedes M. Frequent BRG1/SMARCA4-Inactivating mutations in human lung cancer cell lines. Hum Mutat. 2008;29(5)617-22. https://doi. org/10.1002/humu.20730
Rodriguez-Nieto S, Cañada A, Pros E, Pinto AI, Torres-Lanzas J, Lopez-Rios F, et al. Massive parallel DNA pyrosequencing analysis of the tumor suppressor BRG1/SMARCA4 in lung primary tumors. Hum Mutat. 2011;32(2):E1999-2017. https://doi.org/10.1002/humu.21415
Medina PP, Carretero J, Ballestar E, Angulo B, Lopez-Rios F, Esteller M, et al. Transcriptional targets of the chromatin-remodelling factor SMARCA4/ BRG1 in lung cancer cells. Hum Mol Gen. 2005;14(7):973-82. https:// doi.org/10.1093/hmg/ddi091
Orvis T, Hepperla A, Walter V, Song S, Simon J, Parker J, et al. BRG1/ SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res. 2014;74(22):6486-98. https://doi.org/10.1158/0008-5472.CAN-14-0061
Bell EH, Chakraborty AR, Mo X, Liu Z, Shilo K, Kirste S, et al. SMARCA4/ BRG1 Is a novel prognostic biomarker predictive of cisplatin-based chemotherapy outcomes in resected non-small cell lung cancer. Clin Cancer Res. 2016;22(10):2396-404. https://doi.org/10.1158/1078-0432.CCR-15-1468
Agaimy A, Fuchs F, Moskalev EA, Sirbu H, Hartmann A, Haller F. SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1(neg)/CK7(pos)/HepPar-1(pos) immunophenotype. Virchows Arch. 2017;471(5):599-609. https://doi.org/10.1007/ s00428-017-2148-5
Meng J, Zhang XT, Liu XL, Fan L, Li C, Sun Y, et al. WSTF promotes proliferation and invasion of lung cancer cells by inducing EMT via PI3K/ Akt and IL-6/STAT3 signaling pathways. Cell Signal. 2016;28(11):1673-82. https://doi.org/10.1016/j.cellsig.2016.07.008
Wang CL, Wang CI, Liao PC, Chen CD, Liang Y, Chuang WY, et al. Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J Proteome Res. 2009;8(10):4428-40. https://doi.org/10.1021/ pr900160h
Liu SL, Han Y, Zhang Y, Xie CY, Wang EH, Miao Y, et al. Expression of metastasis-associated protein 2 (MTA2) might predict proliferation in non-small cell lung cancer. Target Oncol. 2012;7(2):135-43. https://doi. org/10.1007/s11523-012-0215-z
Cao LL, Song X, Pei L, Liu L, Wang H, Jia M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: A meta-analysis. Medicine. 2017;96(31):e7663. https://doi. org/10.1097/MD.0000000000007663
Zhang L, Bu L, Hu J, Xu Z, Ruan L, Fang Y, et al. HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells. J Biol Chem. 2018;399(6):603-10. https://doi.org/10.1515/hsz-2017-0306
Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ, Xie HJ, et al. HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J Cell Biochem. 2012;113(6):2167-77. https://doi.org/10.1002/jcb.24090
Li L, Mei DT, Zeng Y. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016;84:284-90. https://doi.org/10.1016/j. biopha.2016.09.030
Luo W, Tian P, Wang Y, Xu H, Chen L, Tang C, et al. Characteristics of genomic alterations of lung adenocarcinoma in young never-smokers. Int J Cancer. 2018;143(7):1696-705. https://doi.org/10.1002/ijc.31542
Wang Y HN, Cheng X, Zhang J, Tan X, Zhang C, Tang Y, et al. Ezh2 Acts as a tumor suppressor in kras-driven lung adenocarcinoma. Int J Biol Sci. 2017;13(5):652-9. https://doi.org/10.7150/ijbs.19108
Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H, et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res. 2013;19(23):6556-65. https://doi.org/10.1158/1078-0432.CCR-12-3946
Xu C, Hou Z, Zhan P, Zhao W, Chang C, Zou J, et al. EZH2 regulates cancer cell migration through repressing TIMP-3 in non-small cell lung cancer. Med Oncol. 2013;30(4):713. https://doi.org/10.1007/s12032-013- 0713-6
Vrzalikova K, Skarda J, Ehrmann J, Murray PG, Fridman E, Kopolovic J, et al. Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients: a tissue microarray study. J Cancer Res Clin Oncol. 2008;134(9):1037-42. https://doi.org/10.1007/s00432-008-0361-y
Meng X, Wang Y, Zheng X, Liu C, Su B, Nie H, et al. shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell migration and metastasis. Lung cancer. 2012;77(1):24-30. https://doi.org/10.1016/j. lungcan.2012.02.015
Papadakis AI, Sun C, Knijnenburg TA, Xue Y, Grernrum W, Holzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25(4):445-58. https://doi.org/10.1038/cr.2015.16
Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res. 2012;318(16):1973-86. https:// doi.org/10.1016/j.yexcr.2012.06.011
Dubey R, Lebensohn AM, Bahrami-Nejad Z, Marceau C, Champion M, Gevaert O, et al. Chromatin-remodeling complex SWI/SNF controls multidrug resistance by transcriptionally regulating the drug efflux pump ABCB1. Cancer Res. 2016;76(19):5810-21. https://doi.org/10.1158/0008- 5472.CAN-16-0716
Armas-Lopez L, Pina-Sanchez P, Arrieta O, de Alba EG, Ortiz-Quintero B, Santillan-Doherty P, et al. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget. 2017;8(40):67056-81. https://doi.org/10.18632/oncotarget.17715
Armas-Lopez L, Zuniga J, Arrieta O, Avila-Moreno F. The Hedgehog- GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget. 2017;8(36):60684-703. https:// doi.org/10.18632/oncotarget.19527
Nishikawa E, Osada H, Okazaki Y, Arima C, Tomida S, Tatematsu Y, et al. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res. 2011;71(19):6165-73. https://doi. org/10.1158/0008-5472.CAN-11-1020
Kikutake C, Yahara K. Identification of epigenetic biomarkers of lung adenocarcinoma through multi-omics data analysis. PloS one. 2016;11(4):e0152918. https://doi.org/10.1371/journal.pone.0152918
Ávila-Moreno F, Armas-López L, Álvarez-Moran AM, López-Bujanda Z, Ortiz-Quintero B, Hidalgo-Miranda A, et al. Overexpression of MEOX2 and TWIST1 is associated with H3K27me3 levels and determines lung cancer chemoresistance and prognosis. PloS one. 2014;9(12):e114104. https://doi.org/10.1371/journal.pone.0114104
Chen B, Yu M, Chang Q, Lu Y, Thakur C, Ma D, et al. Mdig De-Represses H19 large intergenic non-coding RNA (LincRNA) by down-regulating H3K9me3 and heterochromatin. Oncotarget. 2013;4(9):1427-37. https:// doi.org/10.18632/oncotarget.1155
Lu Y, Beezhold K, Chang Q, Zhang Y, Rojanasakul Y, Zhao H, et al. Lung cancer-associated JmjC domain protein mdig suppresses formation of trimethyl lysine 9 of histone H3. Cell Cycle. 2009;8(13):2101-9. https://doi. org/10.4161/cc.8.13.8927
Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK, et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci. 2007;104(13):5527-32. https://doi.org/10.1073/pnas.0701059104
Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci. 2008;105(1):252-7. https://doi. org/10.1073/pnas.0710735105
Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415-28. https://doi.org/10.1038/nrg816
Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genet. 2000;25:315. https://doi. org/10.1038/77083
Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93(9):691-9. https://doi.org/10.1093/jnci/93.9.691
Wales MM, Biel MA, el Deiry W, Nelkin BD, Issa JP, Cavenee WK, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995;1(6):570-7. https://doi.org/10.1038/ nm0695-570
Yoon JH, Smith LE, Feng Z, Tang MS, Lee CS, Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001;61(19):7110-7.
Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP. DNA methylation biomarkers for lung cancer. Tumor Biol. 2012;33(2):287-96. https://doi.org/10.1007/s13277-011-0282-2
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. https://doi.org/10.1016/j.cell.2007.02.005
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015;147:91-110. https:// doi.org/10.1016/j.pharmthera.2014.11.006
Vendetti FP, Rudin CM. Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opin Biol Ther. 2013;13(9):1273-85. https://doi.org/10.1517/14712598.20 13.819337
Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7237-45. https://doi.org/10.1158/1078-0432. CCR-08-0869
Chen X, Song N, Matsumoto K, Nanashima A, Nagayasu T, Hayashi T, et al. High expression of trimethylated histone H3 at lysine 27 predicts better prognosis in non-small cell lung cancer. Int J Oncol. 2013;43(5):1467- 80. https://doi.org/10.3892/ijo.2013.2062
Barlési F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P, et al. Global histone modifications predict prognosis of resected non-small-cell lung cancer. J Clin Oncol. 2007;25(28):4358-64. https://doi. org/10.1200/JCO.2007.11.2599