2019, Number 3
<< Back Next >>
Rev Fac Med UNAM 2019; 62 (3)
The role of reactive oxygen and nitrogen species in some neurodegenerative diseases
Hernández EDR, Barrera MV, Briz TO, González HEA, Laguna MKD, Jardínez DAS, Sánchez OM, Matuz MD
Language: Spanish
References: 87
Page: 6-19
PDF size: 691.91 Kb.
ABSTRACT
The reactive oxygen and nitrogen species are molecules that
are generated from the physiological cellular metabolism.
However, when there is an imbalance between the production
of free radicals and the antioxidant mechanisms, oxidative
stress is generated. Oxidative stress has been associated
with the development and progression of neurodegenerative
diseases such as Alzheimer, Parkinson and Huntington,
given that the onset of oxidative stress is imperceptible and
that there are still no laboratory studies that can determine
the impact of free radicals in patients with neurodegenerative
diseases. It is important to elucidate the role of free
radicals in neurodegenerative processes in order to have
solid indications about the possible treatment targets and
to prevent the progressive damage in this type of diseases.
REFERENCES
Bartosz, G. Reactive oxygen species: Destroyers or messengers? Biochem Pharmacol. 2009;77(8):1303-15.
Molina-Heredia FP. El lado oscuro del oxígeno. [Internet]. [Actualizado abril 2012]. Disponible en: http://www. sebbm.es/ES/divulgacion-cienciapara-todos_10/el-ladooscuro- deloxigeno_678. DOI: http://dx.doi.org/10.18567/ sebbmdiv_RPC.2012.04.1
Sies H. Hydrogen peroxide as a central redox-signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613-19.
Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans. 2001;29(Pt 2):345-50.
Stamler JS, Singel DJ, Loscalzo J. Biochemistry of Nitric Oxide and its redox-activated forms. Science. 1992; 258(5090):1898-902.
Socco S, Bovee RC, Palczewski MB, Hickok JR, Thomas DD. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res. 2017;121:52-8.
Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1-2):33-65.
Beuparlant P, Hiscott J. Biological and Biochemical inhibitors of the NF-B/Rel proteins and cytokine synthesis. Cytokine Growth Factor Rev. 1996;7(2):175-90.
Clancy R, Varenika B, Huang W, Ballou L, Mukundan A, Amin AR, et al. Nitric oxide synthase/COX cross-Talk: nitric Oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Inmunol. 2000;165(3):1582-7.
Nomura Y. Neuronal apoptosis and protection: effects of nitric oxide and endoplasmic reticulum-related proteins. Biol Pharm Bull. 2004;27(7):961-3.
Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol. 2013;60(1):1-16.
San-Miguel A, Martin-Gil FJ. Importancia de las especies reactivas al oxigeno (radicales libres) y los antioxidantes en clínica. Gac Med Bilbao. 2009;106(3):106-13.
Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991;91(3C):14S-22S.
Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634-58.
Takac I, Schröder K, Brandes RP. The Nox family of NADPH oxidases: friend or foe of the vascular system. Cur Hypertens Rep. 2012;14(1):70-8.
Bedard K, Krause KH. The NOx family of ROS-generation NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245-313.
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Bio Med. 2016;100:14-31.
Islam MT. Oxidative stress and mitochondrial dysfunction- linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82.
Dasuri K, ZhangL, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170-85.
Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. Reactive oxygen and nitrogen species generation, antioxidant defense, and –cell function: a critical role for amino acids. J Endocrinol. 2012;214(1):11-20.
Alpay M, Kismali G, Meral O, Sel T, Ozmerdivenli R, Pasin O. Antioxidant therapy impresses in oxidative stress-induced kidney cells. Bratisl Lek Listy. 2017;118(2):89-94.
Rottenberg H, Hoek JB. The path fromn mitochondrial ROS to aginf runs through the mitochondrial permeability transition pore. Aging Cell. 2017;16(5):943-55.
Zoratti M, Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241(2):136-76.
Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 2017; 2017:1-14.
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci. 2017;130(4):671-81.
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci. 2016; 10(S1):23-48.
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative Stress and neurodegenerative disorders. Int J Mol Sci. 2013;14(12):24438-75.
Waldbaum S, Patel M. Mitochondrial oxidative stress in temporal lobe epilepsy. Epilepsy Res. 2010;88(1):23-45.
Johri A, Chandra A, Beal MF. PGC-1, mitochondrial dysfunction, and Huntington`s disease. Free Radic Biol Med. 2013;62:37-46.
Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int. 2014;2014:1-93.
Rego AC, Oliveira CR. Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases. Neurochem Res. 2003;28(10):1563-74.
Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415-8.
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signaling pathways by reactive oxygen species, Biochimica et Biophysica Acta. 1863;(2016):2977-92.
Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 2017;10:301.
Chiurchiù V, Orlacchio A, Maccarrone M. In modulation of oxidative stress and answers? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev. 2016;2016:7909380. doi: 10.1155/2016/7909380. Epub 2015 Dec 31.
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid Med Cell Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967.
Corona-Vázquez T. Las enfermedades neurológicas. I. Su dimensión y repercusión social. Gac Med Méx. 2002; 138(6):533-46.
Dirección General de Información en Salud. Boletín Epidemiológico. Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información. 2017, Vol. 34, Semana 51. Disponible en: http://www.epidemiologia. salud.gob.mx
Fontan L. La enfermedad de Alzheimer: elementos para el diagnóstico y manejo clínico en el consultorio. Biomedicina. 2012;7(1):34-43.
Kumar A, Singh A, Ekavali. A review on Alzheimer`s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195-203.
Geda YE, Schneider LS, Gitlin LN, Miller DS, Smith GS, Bell J, et al. Neuropsychiatric symptoms in Alzheimer`s disease: past progress and anticipation of the future. Alzheimers Dement. 2013;9(5):602-8.
Martínez-Lage. Know Alzheimer. Respuestas concretas a dudas reales. STADA, Barcelona, Vanguard Grafic S.A., 2014.
Dumont M, Flint Beal M. Neuroprotective strategies involving ROS in Alzheimer`s disease. Free Radic Biol Med. 2011;51(5):1014-26.
Ferreiro E, Oliveira CR, Pereira CM. The release of calcium from the endoplasmic reticulum induced by amyloid- beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis. 2008;30(3):331-42.
Nowotny P, Kwon JM, Goate AM. Alzheimer disease. Life Sci. 2001;1-6.
Querfurth HW, LaFerla FM. Alzheimer`s disease. N Engl J Med. 2010;362(4):329-44.
Korolev IO. Alzheimer`s disease: a clinical and basic science review. Medical Student Research Journal 2014;4:24-33.
Tillement L, Lecanu L, Papadopoulos V. Alzheimer`s disease: effects of –amyloid on mitochondria. Mitochondrion. 2011;11(1):13-21.
Abramov AY, Canevari L, Duchen MR. –Amiloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):562-75.
Moreira PI, Santos MS, Oliveira CR. Alzheimer`s disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal. 2007;9(10):1621-30.
Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer`s disease. Mol Neurodegener. 2011;6:85.
Secretaría de Salud. Guía de práctica clínica, Diagnóstico y tratamiento de la demencia en el adulto mayor en el primer nivel de atención. México: Secretaría de Salud; 2009.
Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009; 30(4):379-87.
Huang Y, Liu Z, Cao BB, Qiu YH, Peng YP. Treg cells protect dopaminergic neurons against MPP+ neurotoxic- ity via CD47-SIRPA interaction. Cell Physiol Biochem. 2017;41(3):1240-54.
Graumann R, Paris I, Martínez-Alvarado P, Rumanque P, Perez-Pastene C, Cardenas SP, et al. Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol J Pharmacol. 2002;54(6): 573-9.
Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J. Dopamine oxidation and autophagy. Parkinsons Dis. 2012; 2012:1-13.
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson` s disease. J Neurochem. 2014;129(6):898-915.
Jenner P, Langston JW. Explaining ADAGIO: a critical review of the biological basis for the clinical effects of rasagiline. Mov Disord. 2011;26(13):2316-23.
Cohen G, Farooqui R, Kesler N. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Aca Sci U S A. 1997;94(10):4890-4.
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson`s disease. J Parkinsons Dis. 2013; 3(4):461-91.
Kalia LV, Lang AE. Parkinson`s disease. Lancet. 2015; 389(9996):896-912.
Van Laar VS, Dukes AA, Cascio M, Hastings TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis. 2008;29(3):477-89.
Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013;65:419-27.
Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson`s disease. J Neurochem. 1999:73(3):1127-37.
Onyou H. Role of Oxidative Stress in Parkinson’s Disease. Exp Neurobiol. 2013 Mar;22(1):11-17. pISSN 1226-2560 • eISSN 2093-8144.
Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer`s disease and Parkinson’s disease. Drug Des Devel Ther. 2017;11:797-810.
Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci. 2001; 21(20):8053-61.
Waxman EA, Giasson BI. Molecular mechanisms of -synuclein neurodegeneration. Biochim Biophys Acta. 2009; 1792(2):616-24.
Ross RA. Huntington`s disease: a clinical review. Orphanet J Rare Dis. 2010;5:40.
Dayalu P, Albin RL. Huntington disease: pathogenesis and treatment. Neurol Clin. 2015;33(1):101-14.
Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol. 2011;98:325-72.
A novel gene containing a trinucleotide repeats that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971-83.
Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol. 2017;157:273-91.
Koyuncu S, Fatima A, Gutierrez-Garcia R, Vilchez D. Proteostasis of Huntingtin in health and disease. Int J Mol Sci. 2017;18(7):1-18.
Arroyave P, Riveros M. Enfermedad de Huntington. Universitas Médica. 2006;47(2):121-30.
Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83-98.
Arango-Lasprilla JC, Iglesias-Dorado J, Lopera F. Características clínicas y neuropsicológicas de la enfermedad de Huntington: una revisión. Rev Neurol. 2003;37(8): 758-65.
McGolgan P, Tabrizi SJ. Huntington`s disease: a clinical review. Eur J Neurol. 2017.
Arango J, Iglesias J, Lopera F. Características clínicas y neuropsicológicas de la enfermedad de Huntington: una revisión. Rev Neurol. 2003;37(8):758-65.
Myers R. Huntington’s Disease Genetics. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics. 2004;1:255-62.
Langbehn DR, Hayden MR, Paulsen JS; and the PREDICT- HD Investigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):397-408.
Ayala-Peña S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington`s disease pathogenesis. Free Radic Biol Med. 2013;62:102-10.
Caroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, et al. Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis. 2011;43(1):257-65.
Johri A. Beal MF. Antioxidants in Huntington’s disease. Biochim Biophys Acta. 2012;1822(5):664-74.
Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington’s disease. Brain Pathol. 1999;9(1):147-63.
Tasset I, Sanchez F, Túnez I. The molecular bases of Huntington’s disease: the role-played by oxidative stress. Rev Neurol. 2009;49(8):429-9.
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid Med Cell Longev. 2017. doi: 10.1155/2017/2525967