2019, Number 2
<< Back Next >>
Rev Hosp Jua Mex 2019; 86 (2)
Electromagnetic stimulation attenuates the depressive behavior induced by 6-hydroxidopamine in rat
Morales-Sandoval JJ, García-Rivera OU, Juárez-Domínguez DA, Moreno-Fitz J, Medina-Salazar I, Elías-Viñas D, Verdugo-Díaz L
Language: Spanish
References: 30
Page: 70-77
PDF size: 216.18 Kb.
ABSTRACT
Introduction: Recently, extremely low frequency electromagnetic fields (EMF-EBF) have received considerable attention because of their potential therapeutic effect. In particular, EMFs are applied in some types of depressive disorders, but their usefulness in the treatment of other neurodegenerative diseases has also been reported. However, there are few reports of the effect of electromagnetic stimulation on Parkinson’s disease (PD) and its association depressive disorder.
Objective: Evaluate the antidepressant effect of EMF-EBF exposure in an animal model of PD through Forced Swim Test (FST).
Material and methods: Hemi-Parkinson was induced in Wistar rats with 6-OHDA. EMF-EBF (2.4 mT, 2 hours/day) was applied during different periods to animals (intact, with false lesion and with lesion). The periods of stimulation were 2, 4 or 6 months. At the end of the corresponding periods, the NF test was performed on all the animals in order to measure depressive parameters. The measured parameters were: latency, number and time of immobility. At the end of the FST, the animals were sacrificed and their brains were processed with an immunohistochemistry against thyroxine hydroxylase (TH) to corroborate the correct injury.
Results: Both groups intact and with false lesions did not show differences on the parameters measured, either by the application of EMF-EBF or by periods of stimulation. Animals with hemi-Parkinson that received electromagnetic stimulation significantly decreased latency and elevated immobility time. The electromagnetic treatment significantly decreased the immobility time in animals with 6-OHDA.
Conclusions: EMF-EBF decreases the depression measured by the forced swimming test at four months of treatment in the animal model of PD. Therefore, the effect of EMF-EBF depends on the time of stimulation in the model of hemi-Parkinson studied.
REFERENCES
Lorraine VK, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
Chen JJ, Marsh L. Depression in Parkinson’s disease: identification and management. Pharmacotherapy 2013; 33(9): 972-83.
Vorovenci RJ, Briudo R, Anonini A. Therapy-resistant symptoms in Parkinson’s disease. J Neural Transm 2016; 123(1): 19-30.
Inoue T, Kitagawa M, Tanaka T, Nakagawa S, Koyama T. Depression and major depressive disorder in patients with Parkinson’s disease. Movement Disorders 2010; 25(1): 44-9.
Trevino K, McClintock SM, McDonald Fischer N, Vora A, Husain MM. Defining treatment-resistant depression: A comprehensive review of the literature. Ann Clin Psychiatry 2014; 26(3): 222-32.
Guerriero F, Ricevuti G. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res 2016; 11(12): 1888-95.
Moreno-Fitz J, Medina-Salazar I, Chávez-Hernández V, Elías-Viñas D, Verdugo-Díaz L. Efecto de la exposición a campos magnéticos de extrema baja frecuencia en un modelo de hemiparkinson en ratas. Neurobiología 2015; 7: 290615.
Janicak PG, Dokucu ME. Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 2015; 11: 1549-60.
Torres EM, Dunnett SB. 6-OHDA lesion models of Parkinson’s disease. In: Lane EL, Dunnett SB (eds.). Animal models of movement disorders. Volume I, Neuromethods, vol. 61, 2001. pp. 267-279.
Penttinen AM, Suleymanova I, Albert K, Anttila J, Voutilainen MH, Airavaara M. Characterization of a new low-dose 6-hydroxydopamine model of Parkinson’s disease in rat. J Neurosci Res 2016; 94(4): 318-28.
Rodríguez-Landa JF, Contreras C. Los fármacos antidepresivos y la conducta de inmovilidad en la prueba de nado forzado, participación de los sistemas de neurotransmisión. Arch Neurocien Mex 2000; 5: 74-83.
Flores-Serrano AG, Zaldívar-Rae J, Salgado-Burgos H, Pineda-Cortés JC. La respuesta locomotora al ambiente novedoso en el corredor circular predice cambios de los índices depresivos y antidepresivos en la prueba de nado forzado en ratas Wistar hembras. Rev Biomed 2014; 25: 3-15.
Norma Oficial Mexicana NOM-062-ZOO-1999 y Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio, coordinación de investigación Comisión de Ética de la Facultad de Medicina. 2007.
Paxinos G, Watson C. The Rat Brain, in stereotaxic coordinates. 5th ed. San Diego, California, USA: Elsevier Academic Press; 2005. pp. 56.
Jackson-Lewis V, Blesa J, Przedborski S. Animal models of Parkinson’s disease. Parkinsonism Relat Disord 2012; Suppl 1: S183-5.
Boixa J, Padel T, Gesine P. A partial lesion model of Parkinson’s disease in mice – Characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behavioural Brain Research 2015; 284: 196-206.
Vázquez-García M, Elías-Viñas D, Reyes-Guerrero G, Domínguez-González A, Verdugo-Díaz L, Guevara-Guzmán R. Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav 2004; 82: 685-690.
Can A, Dao DT, Arad M, Terrillion ChE, Piantadosi SC, Gould TD. The mouse forced Swinm test. J Vis Exp 212; (59): e3638.
Szemerszky R, Zelena D, Barna I, Bárdos G. Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull 2010; 81: 92-99.
Bonitto-Oliva A, et al. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions. Front Behav Neurosci 2014; 8: 290.
Castagne V, Porsol RD, Moser P. Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse. Eur J Pharmacol 2009; 616: 128-33.
Beppe GJ, Dongmo AB, Foyet HS, Dimo T, Mihasan M, Hritcu L. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complement Altern Med 2015; 15: 374.
Matheus FC, Rial D, Real JI, Lemos C, Takahashi RN, Bertoglio LJ, et al. Temporal dissociation of striatum and prefrontal cortex uncouples anhedonia and defense behaviors relevant to depression in 6-OHDA-lesioned rats. Mol Neurobiol 2016; 53(6): 3891-9.
Han LN, Zhang L, Sun YN, Du ChV, Zhang YM, Wang T, et al. Serotonin 7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats. Brain Res 2016; 1644: 79-87.
Zhang YM, Zhang L, Wang Y, Sun YN, Guo Y, Du ChD, et al. Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson’s rats. Neuropharmacology 2016; 110: 25e36.
Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, et al. Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 2001; 24(4): 337-49.
Lai J, Zhang Y, Liu X, Zhang J, Ruan G, Chaugai S, et al. Effects of extremely low frequency electromagnetic fields (100 mT) on behaviors in rats. Euro Toxicology 2016; 52: 104-113.
Sachdev PS, McBride R, Loo C, Gurjhinder M, Malhi S, Croker V. Effects of different frequencies of transcranial magnetic stimulation (TMS) on the forced swim test model of depression in rats. Biol Psychiatry 2002; 51(6): 474-9.
Sun M, Wang K, Yu Y, Su WT, Jiang XX, Yang J, et al. Electroacupuncture alleviates depressive-like symptoms and modulates BDNF signaling in 6-hydroxydopamine rats. Evidence-Based Complementary and Alternative Medicine 2016; 2016. ID 7842362. Available in: http://dx.doi.org/10.1155/2016/7842362.
Furlanetti LL, Coenen VA, Aranda IA, Döbrössy MD. Chronic deep brain stimulation of the medial forebrain bundle reverses depressive-like behavior in a hemiparkinson an rodent model. Exp Brain Res 2015; 233: 3073-85.