2018, Number 3
<< Back
Rev Cub de Tec de la Sal 2018; 9 (3)
Transfusion reactions associated with antigranulocytic antibodies: physiopathogenic and molecular aspects of transfusion acute pulmonary damage
Soler NG, Romero DY, Bencomo HA
Language: Spanish
References: 50
Page: 66-81
PDF size: 262.13 Kb.
ABSTRACT
Introduction: HLA and HNA leukocyte antigenic systems are associated with transfusion reactions. Antibodies
directed against both systems cause febrile nonhemolytic transfusion reaction and acute pulmonary damage
associated with transfusion. The investigation of these antibodies is the strategy to evaluate the patients and
donors involved in these reactions.
Objective: to deepen the physiopathogenic, mechanistic characteristics,
diagnosis and measures of prevention of acute pulmonary damage associated with transfusion.
Methods: a
review of the literature was conducted, through the PubMed website and the Google academic search engine, of
articles published in the last 10 years on the acute pulmonary damage associated with transfusion. An analysis
and summary of the reviewed bibliography was made.
Development: in acute lung damage associated with
antibody-mediated transfusion, it is required that those present in the donor bind to the target antigen present in
the receptor, which leads to complement activation and causes pulmonary sequestration and activation of
neutrophils. In some cases the antibodies are not detected in the donor or in the recipient. The most commonly
used assays for the detection of anti-HNA antibodies are the agglutination, immunofluorescence or flow cytometry
techniques and the immobilization technique of granulocytic antigens with monoclonal antibodies.
Final considerations: preventive measures must be taken to avoid the transfusion of blood products containing antileukocyte antibodies, while the identification of risk factors would improve the risk-benefit estimate in this
therapeutic procedure.
REFERENCES
Warner MA, Welsby IJ, Norris PJ, Silliman CC, Armour S, Wittwer ED, et al. Point-of-care washing of allogeneic red blood cells for the prevention of transfusion-related respiratory complications (WAR-PRC): a protocol for a multicenter randomised clinical trial in patients undergoing cardiac surgery. BMJ Open. 2017; 7: e016398. doi:10.1136/bmjopen-2017-016398
Peters AL, Van Stein D, Vlaar A. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention. British Journal of Haematology. 2015; 170: 597-614. doi: 10.1111/bjh.13459
Rebetz J, Semple JW, Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother. 2018. doi: 10.1159/000492950
Savage WJ. Transfusion Reactions. Hematol Oncol Clin N Am. 2016; 30: 619-34. doi: org/10.1016/j.hoc.2016.01.012
Shander A, Bracey AWJr, Goodnough LT, Gross I, Hassan NE, Ozawa S, et al. Patient blood management as standard of care. Anesth Analg. 2016; 123:1051-3.doi:10.1213/ANE.0000000000001496
Hamzeh-Cognasse H, Damien P, Nguyen KA, Arthaud CA, Eyraud MA, Chavarin P, et al. Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions. Transfusion. 2014; 54: 613-25. doi: 10.1111/trf.12378
Rajesh K, Harsh S, Amarjit K. Effects of Prestorage Leukoreduction on the Rate of Febrile Nonhemolytic Transfusion Reactions to Red Blood Cells in a Tertiary Care Hospital. Ann Med Healt Scien Res. 2015; 5(3):185-8. doi:10.4103/2141-9248.157498.
Bennett-Guerrero E, Kirby BS, Zhu H, Herman AE, Bandarenko N, McMahon TJ. Randomized stud y of washing 40- to 42-day-stored red blood cells. Transfusion. 2014; 54, 2544-52.
Kleinman S, Stassinopoulos A. Risks associated with red blood cell transfusions: potential benefits from application of pathogen inactivation. Transfusion. 2015; 55(12):2983-3000. doi: 10.1111/trf.13259
Clifford L, Jia Q, Subramanian A, Yadav H, Wilson GA, Murphy SP, et al. Characterizing the epidemiology of postoperative transfusion-related acute lung injury. Anesthesiology. 2015; 122(1):12-20. doi: 10.1097/ALN.0000000000000514
Alvarez P, Carrasco R, Romero-Dapueto C, Castillo RL. Transfusion-related acute lung injured (TRALI): current concepts. Open Respir Med J. 2015; 26; 9:92-6. doi: 10.2174/1874306401509010092
Popovsky MA, Abel MD, Moore SB. Transfusion-related acute lung injury associated with passive transfer of antileukocyte antibodies. Am Rev Respir Dis. 1983; 128(1):185-9. doi:10.1164/arrd.1983.128.1.185
Popovsky MA, Moore SB: Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion. 1985; 25(6):573-7.
Semple JW, McVey MJ, Kim M. Targeting transfusion-related acute lung injury: the journey from basic science to novel therapies. Crit Care Med. 2018; 46:e452-e458.
Peters AL, Vlaar AP. Redefining transfusion-related acute lung injury: don't throw the baby out with the bathwater. Transfusion. 2016; 56(9): 2384-8. doi: 10.1111/trf.13643
Añón JM, García de Lorenzo A, Quintana M, González E, Bruscas MJ. Lesión pulmonar aguda producida por transfusión. Med Intensiva. 2010; 34(2): 139-49. doi:10.1016/j.medin.2009.03.007
Kim J, Na S. Transfusion-related acute lung injury; clinical perspectives. Korean J Anesthesiol. 2015; 68(2): 101-5. doi:10.4097/kjae.2015.68.2.101
Popovsky MA. Transfusion-related acute lung injury: three decades of progress but miles to go before we sleep. Transfusion. 2015; 55(5):930-4. doi: 10.1111/trf.13064
Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 9th ed. Philadelphia: Elsevier; 2017.
Wang SS, Carrington M, Berndt SI, Slager SL, Bracci PM, Voutsinas J, et al. HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res. 2018; 78(14); 4086-96. doi: 10.1158/0008-5472.CAN-17-2900
Raj P, Rai E, Song R, Khan S, Wakeland BE. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife. 2016; 5: e1208. doi: 10.7554/eLife.12089
Human neutrophil antigens: a nomenclature update based on new alleles and new antigens. Flesch BK & for the International Society of Blood Transfusion (ISBT) HNA nomenclature subcommittee. ISBT Science Series. 2015; 10 (1S): 243-9
Flesch BK, Reil A. Molecular Genetics of the Human Neutrophil Antigens. Transfus Med Hemother. 2018. doi: 10.1159/000491031
Li Y, Mair DC, Schuller RM, Li L, Wu J. Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations. PLoS Genet. 2015; 11:e1005255.
Lopes LB, Baleotti WJr, Suzuki RB, Fabron A Jr, Chiba AK, Vieira-Filho JP, et al. HNA-3 gene frequencies in Brazilians and a new polymerase chain reactionrestriction fragment length polymorphism method for HNA- 3a/3b genotyping. Transfusion. 2014; 54: 1619-21.
Mraz GA, Crighton GL, Christie DJ. Antibodies to human neutrophil antigen HNA-4b implicated in a case of neonatal alloimmune neutropenia. Transfusion. 2016; 56: 1161-65.
Okazaki H, Ishikawa O, Iijima T, Kohira T, Teranishi M, Kawasaki S, et al. Novel swine model of transfusionrelated acute lung injury. Transfusion. 2014; 54(12):3097-107. doi: 10.1111/trf.12766
Heemskerk N, Asimuddin M, Oort C, van Rijssel J, van Buul JD. Annexin A2 limits neutrophil transendothelial migration by organizing the spatial distribution of ICAM-1. J Immunol. 2016; 196(6):2767-78. doi: 10.4049/jimmunol.1501322
Schimmel L, Heemskerk N, van Buul JD. Leukocyte transendothelial migration: a local affair. Small GTPases. 2017; 8(1):1-15. doi: 10.1080/21541248.2016.1197872
Silliman CC, Fung YL, Ball JB, Khan SY. Transfusion-related acute lung injury (TRALI): Current Concepts and Misconceptions. Blood Rev. 2009; 23(6): 245-55. doi:10.1016/j.blre.2009.07.005
Morsing KSH, Peters AL, van Buul JD, Vlaar APJ: The role of endothelium in the onset of antibody-mediated TRALI. Blood Rev. 2018; 32: 1-7.
Sachs UJ, Hattar K, Weissmann N, Bohle RM, Weiss T, Sibelius U, et al. Antibody-induced neutrophil activation as a trigger for transfusion-related acute lung injury in an ex vivo rat lung model. Blood. 2006; 107(3):1217-9. doi:10.1182/blood-2005-04-1744
Porcelijn L, de Haas M. Neonatal Alloimmune Neutropenia. Transfus Med Hemother. 2018. doi: 10.1159/000492949
Goodnough LT, Panigrahi AK. Blood transfusion therapy. Med Clin North Am. 2017; 101: 431-47. doi: 10.1016/j.mcna.2016.09.012
Lee YL, King MB, Gonzalez RP, Brevard SB, Frotan MA, Gillespie MN, et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res. 2014; 191: 286-9
Eder AF, Dy BA, O'Neill EM. Predicted effect of selectively testing female donors for HLA antibodies to mitigate transfusion-related acute lung injury risk from apheresis platelets. Transfusion. 2016; 56:1608-15. doi: 10.1111/trf.13482
Roubinian NH, Looney MR, Kor DJ, Lowell CA, Gajic O, Hubmayr RD, et al. Cytokines and clinical predictors in distinguishing pulmonary transfusion reactions. Transfusion. 2015; 55(8):1838-46. doi: 10.1111/trf.13021
Lee JA, Sauer B, Tuminski W, Cheong J, Fitz-Henley J2nd, Mayers M, et al. Best Pharmaceuticals for Children Act – Pediatric Trials Network Steering Committee: Effectiveness of granulocyte colony-stimulating factor in hospitalized infants with neutropenia. Am J Perinatol. 2017; 34: 458-64.
Peters AL, van Hezel ME, Juffermans NP, Vlaar AP. Pathogenesis of non-antibody mediated transfusionrelated acute lung injury from bench to bedside. Blood Rev. 2015; 29(1):51-61. doi: 10.1016/j.blre.2014.09.007
Toy P, Bacchetti P, Grimes B, Gajic O, Murphy EL, Winters JL, et al. Recipient clinical risk factors predominate in possible transfusion-related acute lung injury. Transfusion. 2015; 55(5): 947-52. doi: 10.1111/trf.12954
Hendrickson JE, Roubinian NH, Chowdhury D, Brambilla D, Murphy EL, Wu Y, et al., National Heart, Lung, and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study (REDS-III). Incidence of transfusion reactions: a multicenter study utilizing systematic active surveillance and expert adjudication. Transfusion. 2016; 56:2587-96. doi: 10.1111/trf.13730
Rogers TS, Fung MK, Harm SK. Recent Advances in Preventing Adverse Reactions to Transfusion. F1000Research. 2015; 4: 1469. doi: 10.12688/f1000research.7048.1
Simancas-Racines D, Osorio D, Marti-Carvajal AJ, Arevalo-Rodriguez I. Leukoreduction for the prevention of adverse reactions from allogeneic blood transfusion. Cochrane Database Syst Rev. 2015;(12): doi: 10.1002/14651858.CD009745 .pub2.
Van Stein D, Beckers EA, Peters AL, Porcelijn L, Middelburg RA, Lardy NM, et al. Underdiagnosing of antibody-mediated transfusion-related acute lung injury: evaluation of cellular-based versus bead-based techniques. Vox Sang. 2016; 111:71-8. doi: 10.1111/vox.12383
Bierling P, Bux J, Curtis B, Flesch B, Fung L, Lucas G, et al. Recommendations of the ISBT Working Party on Granulocyte Immunobiology for leucocyte antibody screening in the investigation and prevention of antibodymediated transfusion-related acute lung injury. 2009; 96(3):266-9. doi: 10.1111/j.1423-0410.2008.01144.x
Simtong P, Romphruk AV, Hofmann C, Reil A, Sachs UJ, Santoso S. Improvement of monoclonal antibody– immobilized granulocyte antigen assay for the detection of anti-HNA-1 alloantibodies. Transfusion. 2018; 58:200-7. doi:10.1111/trf.14428
Müller MC, van Stein D, Binnekade JM, Rhenen DJ, Vlaar AP. Low-risk transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion related acute lung injury: a meta-analysis. Transfusion. 2015; 55(1): 164-75. doi: 10.1111/trf.12816
Salpeter SR, Buckley JS, Chatterjee S: Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med. 2014; 127(2): 124-131.e3. doi: 10.1016/j.amjmed.2013.09.017
Schmickl CN, Mastrobuoni S, Filippidis FT, Shah S, Radic J, Murad MH, et al. Male-predominant plasma transfusion strategy for preventing transfusion-related acute lung injury: a systematic review. Crit Care Med. 2015; 43(1): 205-25. doi: 10.1097/CCM.0000000000000675
Middelburg RA, van der Bom JG. Transfusion-related acute lung injury not a two-hit, but a multicausal model. Transfusion. 2015; 55:953-60. doi: 10.1111/trf.12966.