2019, Number 1
<< Back Next >>
Rev Invest Clin 2019; 71 (1)
Role of Genetic Susceptibility in Nicotine Addiction and Chronic Obstructive Pulmonary Disease
Pérez-Rubio G, Córdoba-Lanús E, Cupertino P, Cartujano-Barrera F, Campos MA, Falfán-Valencia R
Language: English
References: 210
Page: 36-54
PDF size: 277.00 Kb.
ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality in developed countries. Although
cigarette smoking is the major risk factor, only 10-20% of smokers develop COPD. The extent of cigarette smoking (pack-years
and smoking duration) accounts for only 15% of the variation in lung function, indicating that differences in susceptibility to
COPD must exist. We provide an overview of the complexity of nicotine addiction and COPD, with special attention to the involvement
of genetic factors. The following aspects are discussed in the present article: (1) epidemiology in Mexico and (2) a
review of the published literature on genetic association studies using the National Center for Biotechnology Information database
of the United States as a search tool. COPD is unique among complex genetic diseases where an environmental risk factor
is known and the level of exposure can be documented with some precision. The high morbidity and mortality associated with
COPD and its chronic and progressive nature has prompted the use of molecular genetic studies to identify susceptibility factors
for the disease. Biomedical research has a remarkable set of tools to aid in the discovery of genes and polymorphisms. We
present a review of the most relevant genetic associations in nicotine addiction and COPD.
REFERENCES
World Health Organization. WHO Report on the Global Tobacco Epidemic, 2013: enforcing Bans on Tobacco Advertising, Promotion and Sponsorship. Geniva: World Health Organization; 2013.
Menezes AM, Perez-Padilla R, Jardim JR, et al. Chronic obstructive pulmonary disease in five latin American cities (the PLATINO study): A prevalence study. Lancet. 2005;366:1875-81.
Minakata Y, Sugiura H, Yamagata T, et al. Prevalence of COPD in primary care clinics: Correlation with non-respiratory diseases. Intern Med. 2008;47:77-82.
Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC. Chronic obstructive pulmonary disease surveillance-United states, 1971-2000. Respir Care. 2002;47:1184-99.
Reynales-Shigematsu LM, Rodríguez-Bolaños R de los Á, Jiménez JA, Juárez-Márquez SA, Castro-Ríos A, Hernández-Ávila M. Costos de la atención médica atribuibles al consumo de tabaco en el Instituto Mexicano del Seguro Social. Salud Publica Mex. Instituto Nacional de Salud Pública. 2002;48:s48-64. Available from: http://www.scielosp.org/scielo.php?script=sci_ arttext&pid=S0036-36342006000700007&lng=es&nrm=iso &tlng=es. [Last accessed on 2018 Mar 2].
Secretaría de Salubridad y Asistencia. Instituto Nacional de Salud Pública (México), Centro Nacional de Información y Documentación en Salud (México). Salud Pública de México. Mexico: Salud Pública de México. [Secretaría de Salubridad y Asistencia]; 2004. p. 169-85. Available from: http://www. s c i e l o . o rg . m x / scielo. php?script=sci_art text&pid =S0036-36342004000200012. [Last accessed on 2018 Mar 23].
Tønnesen P. Smoking cessation and COPD. Eur Respir Rev. 2013; 22:37-43.
Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009; 192:29-60.
Li MD. The genetics of nicotine dependence. Curr Psychiatry Rep. 2006;8:158-64.
World Health Organization. WHO Report on the Global Tobacco Epidemic 2008 : the MPOWER Package. World Health Organization; 2008. p. 342.
U.S. Department of Health and Human Services. The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004.
Swayampakala K, Thrasher J, Carpenter MJ, et al. Level of cigarette consumption and quit behavior in a population of low-intensity smokers-Longitudinal results from the international tobacco control (ITC) survey in Mexico. Addict Behav. 2013; 38:1958-65.
Stillman F, Yang G, Figueiredo V, Hernandez-Avila M, Samet J. Building capacity for tobacco control research and policy. Tob Control. 2006;15 Suppl 1:i18-23.
Regalado-Pineda J, Rodríguez-Ajenjo CJ. La función de la oficina nacional para el control del tabaco en México. Salud Publica Mex. 2008;50:355-65. Available from: http://www.medigraphic. com/cgi-bin/new/resumen.cgi?IDARTICULO=19202. [Last accessed on 2018 Mar 15].
Encuesta Global de Tabaquismo en Adultos. México; 2015, 2017. Available from: http://www.who.int/tobacco/surveillance/survey/ gats/mex-report-2015-spanish.pdf. [Last accessed on 2018 Mar 15].
Secretaría de Salud. Prevención, diagnóstico y tratamiento del consumo de tabaco y humo ajeno, en el primer nivel de atención. 2009;13. Available from: http://www.cenetec.salud.gob.mx/ interior/gpc.html. 2009. [Last accessed on 2018 Mar 15].
Ponciano-Rodríguez G. The urgent need to change the current medical approach on tobacco cessation in latin America. Salud Publica Mex. 2010;52 Suppl 2:S366-72.
Stevens G, Dias RH, Thomas KJ, et al. Characterizing the epidemiological transition in Mexico: National and subnational burden of diseases, injuries, and risk factors. PLoS Med 2008; 5:e125.
Boardman JD, Blalock CL, Pampel FC. Trends in the genetic influences on smoking. J Health Soc Behav. 2010;51:108-23.
Kim DK, Hersh CP, et al. Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respir Res. 2011;12:9.
Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on chronic obstructive pulmonary disease-a twin study. Respir Med. 2010;104:1890-5.
Hersh CP, Hokanson JE, Lynch DA, et al. Family history is a risk factor for COPD. Chest. 2011;140:343-50.
Jimenez-Sanchez G, Silva-Zolezzi I, Hidalgo A, March S. Genomic medicine in Mexico: Initial steps and the road ahead. Genome Res. 2008;18:1191-8.
Shields PG, Lerman C, Audrain J, et al. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and caucasians. Cancer Epidemiol Biomarkers Prev. 1998;7:453-8.
Perkins KA, Lerman C, Grottenthaler A, et al. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharmacol. 2008;19:641-9.
Sieminska A, Buczkowski K, Jassem E, Niedoszytko M, Tkacz E. Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in polish population. BMC Med Genet. 2009;10:92.
Chu SL, Xiao D, Wang C, Jing H. Association between 5-hydroxytryptamine transporter gene-linked polymorphic region and smoking behavior in chinese males. Chin Med J (Engl). 2009; 122:1365-8.
Nussbaum J, Xu Q, Payne TJ, et al. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in european- and African-American smokers. Hum Mol Genet. 2008; 17:1569-77.
Pérez-Rubio G, Pérez-Rodríguez ME, Fernández-López JC, et al. SNPs in NRXN1 and CHRNA5 are associated to smoking and regulation of GABAergic and glutamatergic pathways. Pharmacogenomics. 2016;17:1145-58.
Bierut LJ, Madden PA, Breslau N, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 2007;16:24-35.
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441-7.
Stevens VL, Bierut LJ, Talbot JT, et al. Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev. 2008;17:3517-25.
Saccone NL, Wang JC, Breslau N, et al. The CHRNA5-CHRNA3- CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European- Americans. Cancer Res. 2009;69:6848-56.
Li MD, Yoon D, Lee JY, et al. Associations of variants in CHRNA5/ A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One. 2010;5:e12183.
Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16:36-49.
Tammimäki A, Herder P, Li P, et al. Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by α3β4α5 nicotinic acetylcholine receptors. Neuropharmacology. 2012;63:1002-11.
Wilk JB, Shrine NR, Loehr LR, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med. 2012;186: 622-32.
Krais AM, Hautefeuille AH, et al. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: Effects on motility, migration and p63 expression. Carcinogenesis. 2011;32:1388-95.
Bierut LJ, Stitzel JA, Wang JC, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008; 165:1163-71.
Lips EH, Gaborieau V, McKay JD, et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol. 2010; 39:563-77.
Hong LE, Hodgkinson CA, Yang Y, et al. A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci USA. 2010;107:13509-14.
Janes AC, Smoller JW, David SP, et al. Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women. Drug Alcohol Depend. 2012;120:7-13.
From the Global Strategy for the Diagnosis. Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD); 2017. Available from: http://www.goldcopd. org. [Last accessed on 2018 April 11].
Higgins MW, Keller JB, Landis JR, et al. Risk of chronic obstructive pulmonary disease. Collaborative assessment of the validity of the tecumseh index of risk. Am Rev Respir Dis. 1984; 130:380-5.
Weathington NM, van Houwelingen AH, Noerager BD, et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med. 2006; 12:317-23.
Saetta M. Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:S17-20.
Jones JG, Minty BD, Lawler P, et al. Increased alveolar epithelial permeability in cigarette smokers. Lancet. 1980;1:66-8.
Tsuchiya M, Asada A, Kasahara E, et al. Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma. Circulation. 2002;105:1155-7.
Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE. Dietary antioxidants and cigarette smoke-induced biomolecular damage: A complex interaction. Am J Clin Nutr. 1995;62:1490S- 1500S.
Rangasamy T, Cho CY, Thimmulappa RK, et al. Genetic ablation of nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114:1248-59.
Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22:2283-93.
Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev. 2007;87: 1047-82.
Tetley TD. Inflammatory cells and chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy. 2005;4:607-18.
Burrows B, Knudson RJ, Cline MG, Lebowitz MD. Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis. 1977;115:195-205.
Silverman EK, Chapman HA, Drazen JM, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med. 1998;157:1770-8.
Silverman EK, Speizer FE. Risk factors for the development of chronic obstructive pulmonary disease. Med Clin North Am. 1996;80:501-22.
Sandford AJ, Weir TD, Spinelli JJ, Paré PD. Z and S mutations of the alpha1-antitrypsin gene and the risk of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 1999;20: 287-91.
Ishii T, Matsuse T, Teramoto S, Matsui H, Hosoi T, Fukuchi Y, et al. Association between alpha-1-antichymotrypsin polymorphism and susceptibility to chronic obstructive pulmonary disease. Eur J Clin Invest. 2000;30:543-8.
Poller W, Faber JP, Weidinger S, et al. A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. 1993; 17:740-3.
Poller W, Faber JP, Scholz S, et al. Mis-sense mutation of alpha 1-antichymotrypsin gene associated with chronic lung disease. Lancet. 1992;339:1538.
Joos L, He JQ, Shepherdson MB, et al. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet. 2002;11:569-76.
Minematsu N, Nakamura H, Tateno H, Nakajima T, Yamaguchi K. Genetic polymorphism in matrix metalloproteinase-9 and pulmonary emphysema. Biochem Biophys Res Commun. 2001; 289:116-9.
Hirano K, Sakamoto T, Uchida Y, et al. Tissue inhibitor of metalloproteinases- 2 gene polymorphisms in chronic obstructive pulmonary disease. Eur Respir J. 2001;18:748-52.
Yamada N, Yamaya M, Okinaga S, et al. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol. 1999;21:428-35.
Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350:630-3.
Ishii T, Matsuse T, Teramoto S, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999;54:693-6.
Harrison DJ, Cantlay AM, Rae F, Lamb D, Smith CA. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997;16: 356-60.
Guo X, Lin HM, Lin Z, et al. Surfactant protein gene A, B, and D marker alleles in chronic obstructive pulmonary disease of a Mexican population. Eur Respir J. 2001;18:482-90.
Seifart C, Plagens A, Brödje D, et al. Surfactant protein B intron 4 variation in German patients with COPD and acute respiratory failure. Dis Markers. 2002;18:129-36.
Ito I, Nagai S, Hoshino Y, et al. Risk and severity of COPD is associated with the group-specific component of serum globulin 1F allele. Chest. 2004;125:63-70.
van der Pouw Kraan TC, Küçükaycan M, Bakker AM, et al. Chronic obstructive pulmonary disease is associated with the -1055 IL-13 promoter polymorphism. Genes Immun. 2002;3:436-9. Available from: http://www.nature.com/articles/6363896. [cited on 2018 Feb 28].
Huang SL, Su CH, Chang SC. Tumor necrosis factor-alpha gene polymorphism in chronic bronchitis. Am J Respir Crit Care Med. 1997;156:1436-9.
Sakao S, Tatsumi K, Igari H, et al. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163:420-2.
Vernooy JH, Küçükaycan M, Jacobs JA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: Soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med. 2002;166:1218-24.
Brøgger J, Steen VM, Eiken HG, Gulsvik A, Bakke P. Genetic association between COPD and polymorphisms in TNF, ADRB2 and EPHX1. Eur Respir J. 2006;27:682-8.
Hersh CP, Demeo DL, Lange C, et al. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;33:71-8.
Redline S, Tishler PV, Rosner B, et al. Genotypic and phenotypic similarities in pulmonary function among family members of adult monozygotic and dizygotic twins. Am J Epidemiol. 1989; 129:827-36.
Kueppers F, Miller RD, Gordon H, Hepper NG, Offord K. Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med. 1977;63:336-42.
Wilk JB, Walter RE, Laramie JM, Gottlieb DJ, O’Connor GT. Framingham heart study genome-wide association: Results for pulmonary function measures. BMC Med Genet. 2007;8 Suppl 1:S8.
Loth DW, Artigas MS, Gharib SA, et al. Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet. 2014;46:669-77.
Tang W, Kowgier M, Loth DW, et al. Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function. PLoS One. 2014;9:e100776.
American Thoracic Society, European Respiratory Society. American thoracic society/European respiratory society statement: Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168:818-900.
Vidal R, Blanco I, Casas F, et al. Diagnóstico y tratamiento del déficit de alfa-1-antitripsina. Arch Bronconeumol. 2006;42:645-59.
Fregonese L, Stolk J, Frants RR, Veldhuisen B. Alpha-1 antitrypsin null mutations and severity of emphysema. Respir Med. 2008;102:876-84.
Dahl M, Nordestgaard BG, Lange P, Vestbo J, Tybjaerg-Hansen A. Molecular diagnosis of intermediate and severe alpha(1)- antitrypsin deficiency: MZ individuals with chronic obstructive pulmonary disease may have lower lung function than MM individuals. Clin Chem. 2001;47:56-62.
Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: A longitudinal study of the general population. Ann Intern Med. 2002;136:270-9.
Pérez-Rubio G, Jiménez-Valverde LO, Ramírez-Venegas A, et al. Prevalence of alpha-1 antitrypsin high-risk variants in Mexican mestizo population and their association with lung function values. Arch Bronconeumol. 2015;51:80-5.
Schünemann HJ, Dorn J, Grant BJ, Winkelstein W Jr. Trevisan M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the buffalo health study. Chest 2000;118:656-64.
Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42:36-44.
Young RP, Hopkins RJ. A review of the hispanic paradox: Time to spill the beans? Eur Respir Rev. 2014;23:439-49.
Pérez-Rubio G, Silva-Zolezzi I, Fernández-López JC, et al. Genetic variants in IL6R and ADAM19 are associated with COPD severity in a Mexican mestizo population. COPD. 2016;13:610-5.
Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 2009;5:e1000421.
Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the framingham heart study. PLoS Genet. 2009;5:e1000429.
Miller LA, Wert SE, Clark JC, et al. Role of sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn. 2004;231:57-71.
Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42:45-52.
Editorial: freely Associating. Nat Genet. 1999;22:1-2. Available from: http://www.nature.com/articles/ng0599_1. [cited on 2018 Mar 1].
Hirschhorn JN, Altshuler D. Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab. 2002;87:4438-41.
Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29:306-9.
Seifart C, Plagens A. Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2:541-50.
Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ. Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet. 2006;51:196-203.
Shen M, Vermeulen R, Chapman RS, et al. A report of cytokine polymorphisms and COPD risk in xuan wei, China. Int J Hyg Environ Health. 2008;211:352-6.
Heinzmann A, Ahlert I, Kurz T, Berner R, Deichmann KA. Association study suggests opposite effects of polymorphisms within IL8 on bronchial asthma and respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 2004;114:671-6.
Shen L, Fahey JV, Hussey SB, et al. Synergy between IL-8 and GM-CSF in reproductive tract epithelial cell secretions promotes enhanced neutrophil chemotaxis. Cell Immunol. 2004; 230:23-32.
Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A. 1997;94:3195-9.
Gane JM, Stockley RA, Sapey E. The rs361525 polymorphism does not increase production of tumor necrosis factor alpha by monocytes from alpha-1 antitrypsin deficient subjects with chronic obstructive pulmonary disease-a pilot study. J Negat Results Biomed. 2015;14:20.
Seifart C, Dempfle A, Plagens A, et al. TNF-alpha-, TNF-beta-, IL-6-, and IL-10-promoter polymorphisms in patients with chronic obstructive pulmonary disease. Tissue Antigens. 2005; 65:93-100.
Reséndiz-Hernández JM, Sansores RH, Hernández-Zenteno Rde J, et al. Identification of genetic variants in the TNF promoter associated with COPD secondary to tobacco smoking and its severity. Int J Chron Obstruct Pulmon Dis. 2015;10:1241-51.
Reséndiz-Hernández JM, Ambrocio-Ortiz E, Pérez-Rubio G, et al. TNF promoter polymorphisms are associated with genetic susceptibility in COPD secondary to tobacco smoking and biomass burning. Int J Chron Obstruct Pulmon Dis. 2018;13:627-37.
Pons AR, Noguera A, Blanquer D, et al. Phenotypic characterisation of alveolar macrophages and peripheral blood monocytes in COPD. Eur Respir J. 2005;25:647-52.
Kasuga I, Ruan J, Connett JE, Anthonisen NR, Sandford AJ. Lack of association of human leukocyte antigen-B7 with COPD and rate of decline in lung function. Respir Med. 2005;99:1528-33.
Sugiyama Y, Kudoh S, Maeda H, Suzaki H, Takaku F. Analysis of HLA antigens in patients with diffuse panbronchiolitis. Am Rev Respir Dis. 1990;141:1459-62.
Keicho N, Tokunaga K, Nakata K, et al. Contribution of HLA genes to genetic predisposition in diffuse panbronchiolitis. Am J Respir Crit Care Med. 1998;158:846-50.
Park MH, Kim YW, Yoon HI, et al. Association of HLA class I antigens with diffuse panbronchiolitis in Korean patients. Am J Respir Crit Care Med. 1999;159:526-9.
Kauffmann F, Kleisbauer JP, Cambon-De-Mouzon A, et al. Genetic markers in chronic air-flow limitation. A genetic epidemiologic study. Am Rev Respir Dis. 1983;127:263-9.
Vlaykova T, Dimov D. Polymorphisms of matrix metalloproteinases ( MMP ) in COPD. Biotechnol Biotechnol Equip. 2012;26 Supp 1:111-9. Available from: http://www.tandfonline.com/ doi/abs/10.5504/50YRTIMB.2011.0021. [Last cited on 2018 Mar 21].
Haq I, Chappell S, Johnson SR, et al. Association of MMP-2 polymorphisms with severe and very severe COPD: a case control study of MMPs-1, 9 and 12 in a European population. BMC Med Genet. 2010;11:7.
Rutter JL, Mitchell TI, Butticè G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an ets binding site and augments transcription. Cancer Res. 1998;58:5321-5.
Affara M, Dunmore BJ, Sanders DA, et al. MMP1 bimodal expression and differential response to inflammatory mediators is linked to promoter polymorphisms. BMC Genomics. 2011;12:43.
Wallace AM, Mercer BA, He J, et al. Functional characterization of the matrix metalloproteinase-1 cigarette smoke-responsive region and association with the lung health study. Respir Res. 2012;13:79.
van Diemen CC, Postma DS, Aulchenko YS, et al. Novel strategy to identify genetic risk factors for COPD severity: a genetic isolate. Eur Respir J. 2010;35:768-75.
Ianbaeva DG, Korytina GF, Viktorova TV. Complex search for antiprotease-protease enzyme gene polymorphisms in patients with chronic obstructive pulmonary diseases. Mol Biol (Mosk). 2004;38:973-9.
Korytina GF, Akhmadishina LZ, Ianbaeva DG, Viktorova TV. Polymorphism in promoter regions of matrix metalloproteinases (MMP1, MMP9, and MMP12) in chronic obstructive pulmonary disease patients. Genetika. 2008;44:242-9.
Korytina GF, Tselousova OS, Akhmadishina LZ, et al. Association of the MMP3, MMP9, ADAM33 and TIMP3 genes polymorphic markers with development and progression of chronic obstructive pulmonary disease. Mol Biol (Mosk). 2012;46:487-99.
DeMeo DL, Hersh CP, Hoffman EA, et al. Genetic determinants of emphysema distribution in the national emphysema treatment trial. Am J Respir Crit Care Med. 2007;176:42-8.
McAloon CJ, Wood AM, Gough SC, Stockley RA. Matrix metalloprotease polymorphisms are associated with gas transfer in alpha 1 antitrypsin deficiency. Ther Adv Respir Dis. 2009; 3:23-30.
Akhmadishina LZ, Korytina GF, Kochetova OV, Viktorova EV, Victorova TV. Analysis of polymorphisms of genes associated with immune response and tissue remodeling in occupational chronic bronchitis. Russ J Genet. 2014;50:1208-17. Available from: http://www.link.springer.com/10.1134/S1022795414110027. [Last cited on 2018 Mar 22].
van Diemen CC, Postma DS, Siedlinski M, et al. Genetic variation in TIMP1 but not MMPs predict excess FEV1 decline in two general population-based cohorts. Respir Res. 2011;12:57.
Bchir S, Nasr HB, Anes AB, et al. MMP-2 (-1306 C/T) polymorphism affects serum matrix metalloproteinase (MMP)-2 levels and correlates with chronic obstructive pulmonary disease severity: a case-control study of MMP-1 and-2 in a tunisian population. Mol Diagn Ther. 2016;20:579-90.
Hernández-Montoya J, Pérez-Ramos J, Montaño M, et al. Genetic polymorphisms of matrix metalloproteinases and protein levels in chronic obstructive pulmonary disease in a Mexican population. Biomark Med. 2015;9:979-88.
Grudny J, Kołakowski J, Kruszewski M, et al. Association of genetic dependences between lung cancer and chronic obstructive pulmonary disease. Pneumonol Alergol Pol. 2013;81:308-18.
Brzóska K, Bartłomiejczyk T, Sochanowicz B, et al. Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects. Ann Agric Environ Med. 2014; 21:546-51.
Xu L, Bian W, Gu XH, Shen C. Genetic polymorphism in matrix metalloproteinase-9 and transforming growth factor-β1 and susceptibility to combined pulmonary fibrosis and emphysema in a Chinese population. Kaohsiung J Med Sci. 2017;33:124-9.
Zhou M, Huang SG, Wan HY, et al. Genetic polymorphism in matrix metalloproteinase-9 and the susceptibility to chronic obstructive pulmonary disease in han population of South China. Chin Med J (Engl). 2004;117:1481-4.
Kukkonen MK, Tiili E, Vehmas T, et al. Association of genes of protease-antiprotease balance pathway to lung function and emphysema subtypes. BMC Pulm Med. 2013;13:36.
Bchir S, Nasr HB, Hakim IR, et al. Matrix metalloproteinase-9 (279R/Q) polymorphism is associated with clinical severity and airflow limitation in tunisian patients with chronic obstructive pulmonary disease. Mol Diagn Ther. 2015;19:375-87.
Dollery CM, McEwan JR, Henney AM, et al. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77:863-8.
Hunninghake GM, Cho MH, Tesfaigzi Y, et al. MMP12, lung function, and COPD in high-risk populations. N Engl J Med. 2009; 361:2599-608.
Tacheva T, Dimov D, Aleksandrova E, et al. The G allele of MMP12-82 A> G promoter polymorphism as a protective factor for COPD in Bulgarian population. Arch Physiol Biochem. 2017; 123:371-6.
Arja C, Ravuri RR, Pulamaghatta VN, et al. Genetic determinants of chronic obstructive pulmonary disease in South Indian male smokers. PLoS One. 2014;9:e89957.
Castaldi PJ, Cho MH, San José Estépar R, et al. Genome-wide association identifies regulatory loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med. 2014;190:399-409.
Trojanek JB, Cobos-Correa A, Diemer S, et al. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema. Am J Respir Cell Mol Biol. 2014;51:709-20.
Jackson VE, Ntalla I, Sayers I, et al. Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12. Thorax. 2016;71:501-9.
Zhang RB, He QY, Yang RH, Lu BB, Liu YJ. Study on matrix metalloproteinase 1, 9, 12 polymorphisms and susceptibility to chronic obstructive pulmonary disease among han nationality in Northern China. Zhonghua Liu Xing Bing Xue Za Zhi. 2005; 26:907-10.
Seemungal TA, Donaldson GC, Paul EA, et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157:1418-22.
Connors AF Jr., Dawson NV, Thomas C, et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to understand prognoses and preferences for outcomes and risks of treatments) Am J Respir Crit Care Med. 1996;154:959-67.
Andersson F, Borg S, Jansson SA, et al. The costs of exacerbations in chronic obstructive pulmonary disease (COPD). Respir Med. 2002;96:700-8.
Garcia-Aymerich J, Farrero E, Félez MA, et al. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax. 2003;58:100-5.
Gudmundsson G, Gislason T, Janson C, et al. Risk factors for rehospitalisation in COPD: role of health status, anxiety and depression. Eur Respir J. 2005;26:414-9.
Recalde H, Cuccia M, Oggionni T, et al. Lymphocyte expression of human leukocyte antigen class II molecules in patients with chronic obstructive pulmonary disease. Monaldi Arch Chest Dis. 1999;54:384-9.
Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343:338-44.
Neth O, Jack DL, Dodds AW, et al. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun. 2000;68:688-93.
Turner MW. Mannose-binding lectin (MBL) in health and disease. Immunobiology. 1998;199:327-39.
Yang IA, Seeney SL, Wolter JM, et al. Mannose-binding lectin gene polymorphism predicts hospital admissions for COPD infections. Genes Immun. 2003;4:269-74.
Lin CL, Siu LK, Lin JC, et al. Mannose-binding lectin gene polymorphism contributes to recurrence of infective exacerbation in patients with COPD. Chest. 2011;139:43-51.
Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5:58-68.
Borron PJ, Mostaghel EA, Doyle C, et al. Pulmonary surfactant proteins A and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J Immunol. 2002; 169:5844-50.
Vandivier RW, Ogden CA, Fadok VA, et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol. 2002;169:3978-86.
Foreman MG, DeMeo DL, Hersh CP, et al. Polymorphic variation in surfactant protein B is associated with COPD exacerbations. Eur Respir J. 2008;32:938-44.
Liu YC, Yu MM, Chai YF, Shou ST. Sialic acids in the immune response during sepsis. Front Immunol. 2017;8:1601.
Angata T, Ishii T, Motegi T, et al. Loss of siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci. 2013;70:3199-210.
Ishii T, Angata T, Wan ES, et al. Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency. Respirology. 2017;22:684-90.
Emeryk-Maksymiuk J, Emeryk A, Krawczyk P, Wojas-Krawczyk K, Milanowski J. Beta-2-adrenoreceptor polymorphism at position 16 determines the clinical severity of chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2017;43:1-5.
Hussein MH, Sobhy KE, Sabry IM, El Serafi AT, Toraih EA. Beta2- adrenergic receptor gene haplotypes and bronchodilator response in Egyptian patients with chronic obstructive pulmonary disease. Adv Med Sci. 2017;62:193-201.
Rabe KF, Fabbri LM, Israel E, et al. Effect of ADRB2 polymorphisms on the efficacy of salmeterol and tiotropium in preventing COPD exacerbations: a prespecified substudy of the POETCOPD trial. Lancet Respir Med. 2014;2:44-53.
Mokry M, Joppa P, Slaba E, et al. Beta2-adrenergic receptor haplotype and bronchodilator response to salbutamol in patients with acute exacerbations of COPD. Med Sci Monit. 2008; 14:CR392-8.
Bleecker ER, Meyers DA, Bailey WC, et al. ADRB2 polymorphisms and budesonide/formoterol responses in COPD. Chest. 2012;142:320-8.
Cherubini E, Esposito MC, Scozzi D, et al. Genetic polymorphism of CHRM2 in COPD: clinical significance and therapeutic implications. J Cell Physiol. 2016;231:1745-51.
Ishii T, Motegi T, Kamio K, Gemma A, Kida K. Association of group component genetic variations in COPD and COPD exacerbation in a Japanese population. Respirology. 2014;19:590-5.
Platé M, Lawson PJ, Hill MR, et al. Impact of a functional polymorphism in the PAR-1 gene promoter in COPD and COPD exacerbations. Am J Physiol Lung Cell Mol Physiol. 2014; 307:L311-6.
Mlak R, Homa-Mlak I, Powrózek T, et al. Impact of I/D polymorphism of ACE gene on risk of development and course of chronic obstructive pulmonary disease. Arch Med Sci. 2016; 12:279-87.
Zhang J, Peng S, Cheng H, et al. Genetic pleiotropy between nicotine dependence and respiratory outcomes. Sci Rep. 2017; 7:16907.
Reynolds PR, Allison CH, Willnauer CP. TTF-1 regulates α5 nicotinic acetylcholine receptor (nAChR) subunits in proximal and distal lung epithelium. Respir Res. 2010;11:175.
Benowitz NL. Neurobiology of nicotine addiction: implications for smoking cessation treatment. Am J Med. 2008;121:S3-10.
Klinke ME, Jónsdóttir H. Smoking addiction in chronic obstructive pulmonary disease: integrating neurobiology and phenomenology through a review of the literature. Chron Respir Dis. 2014;11:229-36.
Lam DC, Luo SY, Fu KH, et al. Nicotinic acetylcholine receptor expression in human airway correlates with lung function. Am J Physiol Lung Cell Mol Physiol. 2016;310:L232-9.
Gwilt CR, Donnelly LE, Rogers DF. The non-neuronal cholinergic system in the airways: an unappreciated regulatory role in pulmonary inflammation? Pharmacol Ther. 2007;115:208-22.
Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6:e1001053.
Kaur-Knudsen D, Nordestgaard BG, Bojesen SE. CHRNA3 genotype, nicotine dependence, lung function and disease in the general population. Eur Respir J. 2012;40:1538-44.
Lambrechts D, Buysschaert I, Zanen P, et al. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med. 2010;181:486-93.
Keskitalo K, Broms U, Heliövaara M, et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet. 2009;18:4007-12.
Yang L, Qiu F, Lu X, et al. Functional polymorphisms of CHRNA3 predict risks of chronic obstructive pulmonary disease and lung cancer in chinese. PLoS One. 2012;7:e46071.
Korytina GF, Akhmadishina LZ, Viktorova EV, Kochetova OV, Viktorova TV. IREB2, CHRNA5, CHRNA3, FAM13A and hedgehog interacting protein genes polymorphisms and risk of chronic obstructive pulmonary disease in tatar population from Russia. Indian J Med Res. 2016;144:865-76.
Pérez-Rubio G, Falfán-Valencia R, Sánchez-Romero C, et al. Susceptibilidad genética a EPOC se modifi ca por la contribución ancestral (Amerindia-Europea) en mestizos mexicanos. Neumol Cir Torax. 2017;76:143.
Miller MR. Structural and physiological age-associated changes in aging lungs. Semin Respir Crit Care Med. 2010;31:521-7.
Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685-705.
Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest. 2009;135:173-80.
Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006; 174:886-93.
Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration. 2010;80:59-70.
Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:861-70.
Amsellem V, Gary-Bobo G, Marcos E, et al. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184:1358-66.
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-217.
Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 2013;162:156-73.
Alder JK, Guo N, Kembou F, et al. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med. 2011;184:904-12.
Shen M, Cawthon R, Rothman N, et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer. 2011;73:133-7.
Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008;44:235-46.
Morlá M, Busquets X, Pons J, Sauleda J, MacNee W, Agustí AG. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006;27:525-8.
Savale L, Chaouat A, Bastuji-Garin S, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:566-71.
Mui TS, Man JM, McElhaney JE, et al. Telomere length and chronic obstructive pulmonary disease: evidence of accelerated aging. J Am Geriatr Soc. 2009;57:2372-4.
Houben JM, Mercken EM, Ketelslegers HB, et al. Telomere shortening in chronic obstructive pulmonary disease. Respir Med. 2009;103:230-6.
Lee J, Sandford A, Man P, Sin DD. Is the aging process accelerated in chronic obstructive pulmonary disease? Curr Opin Pulm Med. 2011;17:90-7.
Córdoba-Lanús E, Cazorla-Rivero S, Espinoza-Jiménez A, et al. Telomere shortening and accelerated aging in COPD: findings from the BODE cohort. Respir Res. 2017;18:59.
Rode L, Bojesen SE, Weischer M, Vestbo J, Nordestgaard BG. Short telomere length, lung function and chronic obstructive pulmonary disease in 46,396 individuals. Thorax. 2013;68:429-35.
Rutten EP, Gopal P, Wouters EF, et al. Various mechanistic pathways representing the aging process are altered in COPD. Chest. 2016;149:53-61.
Albrecht E, Sillanpää E, Karrasch S, et al. Telomere length in circulating leukocytes is associated with lung function and disease. Eur Respir. J 2014;43:983-92.
Kara M, Mirici A. Loneliness, depression, and social support of Turkish patients with chronic obstructive pulmonary disease and their spouses. J Nurs Scholarsh. 2004;36:331-6.
Dahlén I, Janson C. Anxiety and depression are related to the outcome of emergency treatment in patients with obstructive pulmonary disease. Chest. 2002;122:1633-7.
van Ede L, Yzermans CJ, Brouwer HJ. Prevalence of depression in patients with chronic obstructive pulmonary disease: a systematic review. Thorax. 1999;54:688-92.
Ji R, He Q, Zhang R, Gao Z, Ding D. A genetic study of the depressive respiratory responses to hypoxia in chronic obstructive pulmonary disease patients with type II respiratory failure. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2000;17:173-7.
Pietras T, Witusik A, Panek M, et al. Anxiety, depression and polymorphism of the gene encoding superoxide dismutase in patients with chronic obstructive pulmonary disease. Pol Merkur Lekarski. 2010;29:165-8.
Ishii T, Wakabayashi R, Kurosaki H, Gemma A, Kida K. Association of serotonin transporter gene variation with smoking, chronic obstructive pulmonary disease, and its depressive symptoms. J Hum Genet. 2011;56:41-6.