2018, Number 5
<< Back Next >>
Rev Mex Neuroci 2018; 19 (5)
Otic Neurogenesis
Nuñez-Castruita A, López-Serna N
Language: Spanish
References: 50
Page: 54-63
PDF size: 601.77 Kb.
ABSTRACT
Otic neurogenesis develops through a long series of cellular induction and specification events that progressively transform
a set of undifferentiated progenitor cells into functional vestibular and auditory neurons. Every specific stage of development
is precisely guided by the expression of a set of genes, growth factors, and molecular pathways, which shapes the individual
cellular phenotype and assemble the entire auditory pathway. In this review, we have selected the key moments of neural
development in the inner ear; from the mechanisms underlying the formation of otic placode, to the development of synaptic
connections between the cochleovestibular ganglion neurons and the sensory hair cells. On this journey, we focus on describing
the best known molecular mechanisms underlying the development of otic neurons. The study of otic neurogenesis
offers the possibility of understanding congenital and acquired pathologies that result in hearing loss, one of the most common
neural deficits in humans.
REFERENCES
Deafness and hearing loss. World Health Organization. 2018. [Acceso el 20 de marzo de 2018]. Disponible en: http://www.who.int/mediacentre/ factsheets/fs300/en/
Ahmed H, Shubina-oleinik O, Holt JR. Emerging gene therapies for genetic hearing loss. J Assoc Res Otolaryngol. 2017:18(5):649-70.
Schwander M, Kachar B, Muller U. Review series: the cell biology of hearing. J Cell Biol. 2010;190(1):9-20.
Chen J, Streit A. Induction of the inner ear: Stepwise specification of otic fate from multipotent progenitors. Hear Res. 2013;297:3-12.
Schlosser G. Making senses development of vertebrate cranial placodes. Int Rev Cell Mol Biol. 2010;283:129-234.
Ladher RK. Seminars in cell & developmental biology changing shape and shaping change: inducing the inner ear. Semin Cell Dev Biol. 2017; 65:39-46.
Abelló G, Khatri S, Radosevic M, Scotting PJ, Giráldez F, Alsina B. Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol. 2010;339(1):166-78.
Neves J, Vachkov I, Giráldez F. Sox2 regulation of hair cell development: incoherence makes sense. Hear Res. 2013;297:20-9.
Neves J, Parada C, Chamizo M, Giráldez F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development. 2011; 138(4):735-44.
Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A. 2008;105(47):18396-401.
Appler JM, Goodrich LV. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly. Prog Neurobiol. 2011;93(4):488-508.
Sarkar A, Hochedlinger K. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15-30.
Ahmed M, Wong EYM, Sun J, Xu J, Wang F, Xu PX. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell. 2012;22(2):377-90.
Neves J, Uchikawa M, Bigas A, Giráldez F. The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One. 2012;7(1):e30871.
Pan W, Jin Y, Stanger B, Kiernan AE. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci. 2010;107(36):15798-803.
Raft S. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development. 2004;131(8):1801-12.
Fritzsch B, Eberl DF, Beisel KW. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci. 2010;67(18):3089-99.
Kiernan AE. Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol. 2013;24(5):470-9.
Neves J, Abelló G, Petrovic J, Giráldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ. 2013;55(1):96-112.
Sánchez-Calderón H, Milo M, León Y, Varela-Nieto I. A network of growth and transcription factors controls neuronal differentation and survival in the developing ear. Int J Dev Biol. 2007;51(6-7):557-70.
Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW. Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci. 2010; 30(2):714-22.
Evsen L, Sugahara S, Uchikawa M, Kondoh H, Wu DK. Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. J Neurosci. 2013;33(9):3879-90.
Deng M, Yang H, Xie X, Liang G, Gan L. Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expr Patterns. 2014;15(1):31-7.
Aburto MR, Magariños M, León Y, Varela-Nieto I, Sánchez-Calderón H. AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One. 2012;7(1):e30790.
Lawoko-Kerali G, Rivolta MN, Lawlor P, Cacciabue-Rivolta DI, Langton- Hewer C, van Doorninck JH, et al. GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech Dev. 2004;121(3):287-99.
Coate TM, Kelley MW. Making connections in the inner ear: Recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol. 2013;24(5):460-9.
Bell D, Streit A, Gorospe I, Varela-Nieto I, Alsina B, Giráldez F. Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol. 2008;322(1):109-20.
Desai SS. Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol. 2004;93(1):251-66.
Eatock RA, Songer JE. Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci. 2011;34:501-34.
Deans MR. A balance of form and function: planar polarity and development of the vestibular maculae. Semin Cell Dev Biol. 2013;24(5):490-8.
Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development. 2007;134(16):2925-33.
Defourny J, Lallemend F, Malgrange B. Structure and development of cochlear afferent innervation in mammals. Am J Physiol Cell Physiol. 2011;301(4):C750-61.
Yu WM, Appler JM, Kim YH, Nishitani AM, Holt JR, Goodrich LV. A Gata3- Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife. 2013;2:1-25.
Yu WM, Goodrich LV. Morphological and physiological development of auditory synapses. Hear Res. 2014;311:3-16.
Matilainen T, Haugas M, Kreidberg JA, Salminen M. Analysis of Netrin 1 receptors during inner ear development. Int J Dev Biol. 2007;51(5):409-14.
Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9).
Coate TM, Raft S, Zhao X, Ryan AK, Crenshaw EB, Kelley MW. Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron. 2012;73(1):49-63.
Coate TM, Spita NA, Zhang KD, Isgrig KT, Kelley MW. Neuropilin-2/ Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. Elife. 2015;4:1-24.
Wang SZ, Ibrahim LA, Kim YJ, Gibson DA, Leung HC, Yuan W, et al. Slit/ Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. J Neurosci. 2013;33(30):12242-54.
Fantetti KN, Fekete DM. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro. Dev Neurobiol. 2012;72(9):1213-28.
Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res. 2011;278(1-2):21-33.
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C’s of neurotrophins in the cochlea. Anat Rec Adv Integr Anat Evol Biol. 2012;295(11):1877-95.
Fukui H, Wong HT, Beyer LA, Case BG, Swiderski DL, Di Polo A, et al. BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice. Sci Rep. 2012;2:838.
Budenz CL, Pfingst BE, Raphael Y. The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec Adv Integr Anat Evol Biol. 2012;295(11):1896-908.
Appler JM, Lu CC, Druckenbrod NR, Yu WM, Koundakjian EJ, Goodrich LV. Gata3 is a critical regulator of cochlear wiring. J Neurosci. 2013;33(8):3679-91.
Duncan JS, Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One. 2013;8(4):e62046.
Huang LC, Barclay M, Lee K, Peter S, Housley GD, Thorne PR, et al. Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev. 2012;7:38.
Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev. 2011;6(1):33.
Bulankina V, Moser T. Neural circuit development in the mammalian cochlea. Physiology. 2012;27(2):100-12.
Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, et al. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci. 2016; 43(2):148-61.