2018, Number 5
<< Back Next >>
Rev Mex Neuroci 2018; 19 (5)
Clinical, genetic and molecular characteristics of Huntington’s disease in Costa Rican patients: experience of 14 years of molecular diagnosis
Vásquez-Cerdas M, Morales-Montero F, Cuenca-Berger P
Language: Spanish
References: 40
Page: 9-18
PDF size: 356.74 Kb.
ABSTRACT
Objective: The aim is to present a descriptive and updated summary of the results of clinical and genetic studies of Huntington’s
disease in Costa Rica, carried out since 2004.
Methods: Molecular diagnosis was carried out in patients with clinical
diagnosis or suspect of Huntington’s disease, and their asymptomatic relatives at 50% risk. Patients received genetic
counseling.
Results: In 2004 the molecular diagnosis of Huntington’s disease in Health Research Institute was implemented,
because before 2004 only clinical diagnosis was done. From 2004 to date, the molecular diagnosis was made to 135 people.
Of these individuals, 56 had a clinical or suspected diagnosis of Huntington. However, the mutation was found only in 33 of
these patients (mutation carriers). The remaining 79 people are relatives at risk and of these, only 22 people were found to
be carriers of the mutation (asymptomatic at the moment of sampling). Thus, since the molecular diagnosis was implemented,
we have identified 55 people with the mutation; 35 women (64%) and 20 men (36%). Clinical and molecular genetic characteristics
of Costa Rican Huntington’s disease patients are similar to other populations.
Conclusions: The molecular
diagnosis can prevent the occurrence and recurrence of Huntington’s disease. There are other diseases similar to Huntington’s
disease, therefore, molecular diagnosis is a helpful tool in order to establish the proper clinical diagnosis. Accordingly to our
experience, presymptomatic testing fully addresses the following individual’s expectancies: uncertainty relief, knowledge of
the risk of transmitting the disease to their children and health care planning in the coming years.
REFERENCES
Novak M, Tabrizi S. Huntington’s disease: clinical presentation and treatment. Int Rev Neurobiol. 2011;98:297-323.
Morrison P, Harding-Lester S, Bradley A. Uptake of Huntington disease predictive testing in a complete population. Clin Genet. 2011; 80(3):281-6.
Evans SJ, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg Psychiatry. 2013;84(10):1156-60.
Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The Incidence and Prevalence of Huntington’s Disease: A Systematic Review and Meta-analysis. Mov Disorders. 2012;27(9):1083-91.
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72:971-83.
Bean L, Bayrak-Toydemir P. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet Med. 2014;16(12):e2.
Gusella JF, Wexler NS, Conneally PM, Naylor SM, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234-8.
Straus WM. Preparation of genomic DNA from mammalian tissue. En: Ausubel FM, R Brent, RE Kinston, eds. Current protocols in molecular biology. New York: Wiley; 1988. 2.2.1-2.2.3.
Warner JP, Barron LH, Brock DJH. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosome. Mol Cell Probes. 1993;7(3):235-9.
Liu Y, Shen Y, Li H, Wang H, Yang ZR, Chen Y, et al. Intergeneration CAG expansion in a Wuhan juvenile-onset Huntington disease family. Neuroscience Bull. 2007;23(4):198-202.
Vásquez M, Sevilla F, Gutiérrez A, Cuenca P, Morales F. Enfermedad de Huntington infantil: reporte del primer caso en Costa Rica confirmado por análisis molecular. Neuroje. 2016;29(2):18-25.
Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington´s disease. Nat Genet. 1993;4(4):398-403.
Sánchez A, Castellvi-Bel S, Mila M, Genis D, Calopa M, Jiménez D, et al. Huntington´s disease: confirmation of diagnosis and presymptomatic testing in spanish families by genetic analysis. J Neurol Neurosurg Psychiatry. 1996;61(6):625-7.
Alonso ME, Yescas P, Cisneros B, Martínez C, Silva G, Ochoa A, et al. Analysis of the (CAG)n repeat causing Huntington´s disease in a Mexican population. Clin Genet. 1997;51:225-30.
Lima e Silva T, Guerra H, Bertuzzo C, Lopes I. Molecular diagnosis of Huntington disease in Brazilian patients. Arq Neuropsiquiatr. 2000;58(1):11-7.
Saleem Q, Roy S, Murgood U, Saxena R, Verma IC, Anand A, et al. Molecular analysis of Huntington´s disease and linked polymorphisms in the Indian population. Acta Neurol Scand. 2003;108(4):281-6.
Akbas F, Erginel-Unaltuna N. DNA testing for Huntington disease in the Turkish population. Eur Neurol. 2003;50(1):20-4.
The U.S.–Venezuela Collaborative Research Project. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Nat Acad Sci. 2004;101(10):498-503.
Ross C, Aylward E, Wild E, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204-16.
González-Alegre P, Afifi A. Clinical Characteristics of Childhood-Onset (Juvenile) Huntington Disease: Report of 12 Patientes and Review of the Literature. J Child Neurol. 2006;21(3):223-9.
Lee J, Ramos E, Lee JH, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690-5.
Nance M, Myers R. Juvenile onset Huntington’s disease--clinical and research perspectives. Ment Retard Dev Disabil Res Rev. 2001;7(3):153-7.
Bates G. The molecular genetics of Huntington disease-a history. Nat Rev Genet. 2005;6:766-73.
Yoon G, Kramer J, Zanko A, Guzijan M, Lin S, Foster-Barber A, et al. Speech and language delay are early manifestations of juvenile-onset Huntington disease. Neurology. 2006;67(7):1265-7.
Ribai P, Nguyen K, Hahn-Barma V, Gourfinkel-An I, Vidailhet M, Legout A, et al. Psychiatric and cognitive difficulties as indicators of juvenile Huntington disease onset in 29 patients. Arch Neurol. 2007;64(6):813-9.
Quarrell O, Nance M, Nopoulos P, Gourfinkel-An I, Vidailhet M, Legout A, et al. Managing juvenile Huntington’s disease. Neurodegener Dis Manag. 2013;3:267-76.
Brackenridge CJ. Factors influencing dementia and epilepsy in Huntington’s disease of early onset. Acta Neurol Scand. 1980;62(5):305-11.
Cloud L, Rosenblatt A, Margolis R, Ross CA, Pillai JA, Corey-Bloom J, et al. Seizures in Juvenile Huntington’s Disease: Frequency and Characterization in a Multicenter Cohort. Mov Disorders. 2012;27(14):1797-800.
Cubo E, Ramos-Arroyo M, Martínez-Horta S, Martínez-Descalls A, Calvo S, Gil-Polo C, et al Clinical manifestations of intermediate allele carriers in Huntington disease. Neurology. 2016;87(6):571-8.
Goldberg YP, McMurray CT, Zeisler J, Almqvist E, Sillence D, Richards F, et al. Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population. Hum Mol Genet. 1995;4(10):1911-8.
Chong SS, Almqvist E, Telenius H, LaTray L, Nichol K, Bourdelat- Parks B, et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Mol Genet. 1997;6(2):301-9.
Kenney C, Powell S, Jankovic J. Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord. 2007;22(1):127-30.
Ha AD, Jankovic J. Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med. 2011;123(5):116-21.
Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediatelength polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069-75.
Hagerman RJ, Hagerman PJ. The fragile X premutation: into the phenotypic fold. Curr Opin Genet Dev. 2002;12(3):278-83.
Wild E, Tabrizi S. Huntington’s disease phenocopy syndromes. Curr Opin Neurol. 2007;20:681-7.
Vásquez M, Morales F, Fernández H, del Valle G, Fornaguera J, Cuenca P. Diagnóstico Molecular de la enfermedad de Huntington (HD) en Costa Rica. Acta Med Costarric. 2008;50(1):35-41.
Vásquez M, Morales F, Campos D, Gutiérrez B, Fernández H, Cuenca P. Abordaje integral de pacientes afectados con la enfermedad de Huntington (HD) y sus familiares. Acta Med Costarric. 2011;53(3):136-43.
Vásquez M, Suárez JD, Álvarez B, Barboza M. Propuesta de intervención fisioterapéutica en el hogar, para pacientes con la enfermedad de Huntington en Costa Rica. Neuroeje. 2015;28(1):12-23.
Vásquez M, Suárez JD. Beneficios de la terapia física en la Enfermedad de Huntington (HD). Neuroeje. 2015;28(1):24-36.