2019, Number 1
<< Back Next >>
Rev Fac Med UNAM 2019; 62 (1)
The megakaryocyte: a very original cell
González-Villalva A, Bizarro-Nevares P, Rojas-Lemus M, López-Valdez N, Ustarroz-Cano M, Barbosa-Barrón F, García-Gil B, Albarrán-Alonso JC, Fortoul GTI
Language: Spanish
References: 72
Page: 6-18
PDF size: 563.48 Kb.
ABSTRACT
The Megakaryocyte is the biggest cell in the bone marrow;
therefore, it is easy to recognize in a bone marrow aspirate.
In humans, this cell differs from others because of its size, its
polyploidy and because it grows by endomitosis. It is the only
human cell that grows this way. In addition, the megakaryocyte
has very important biological functions. Its best-known function
is being in charge of the production of platelets, which
are essential for hemostasis, the repair of damaged blood vessels,
and healing the tissues surrounding wounds. However,
in recent years, other functions have been attributed to the
megakaryocyte, which will be discussed in this review.
REFERENCES
González Villalva A, Carrillo Mora P. Hematopoyesis. Capítulo 10. En: Fortoul Teresa. Histología y Biología Celular. Tercera Edición. México: Ed. McGraw-Hill Interamericana. 2017. p. 165-71.
Zucker-Franklin D, Philipp CS. Platelet production in the pulmonary capillary bed: New ultrastructural evidence for an old concept. Am J Pathol. 2000;157:69-74.
Izaguirre-Ávila R. El descubrimiento de las plaquetas. Rev Biomed. 1997;8:197-208.
Barry S. Coller-Historical Perspective and Future Directions in Platelet Research. J Thromb Haemost. 2011;9(Suppl 1):374-95.
Kaushansky K. Historical review: megakaryopoiesis and thrombopoiesis. Blood. 2008;111(3):981-6.
Vigon I, Momon JP, Cocault L, Mitjavila MT, Tambourin P, Gisselbrecht S, Souyri M. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci USA. 1992;89(12):5640-4.
De Sauvage FJ, Hass PE, Spencer SD, et al. LA, Goeddel DV, Eaton DL. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994;369:533- 8.
Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77:1117-24.
Kuter DJ, Beeler DL, Rosenberg RD. The purificationof megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA. 1994;91:11104-8.
Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994;369:568-71.
Kaushansky K. Thrombopoietin and its receptor in normal and neoplastic hematopoiesis. Thrombosis journal. 2016;14(Suppl1):40,23-6.
González Villalva A, Falcón Rodríguez CI, Fortoul TI. Vías de señalización implicadas en la megacariopoyesis. Gac Méd Méx. 2010;146(2):136-43.
Fielder P,Gurney AL, Stefanich E, Marian M, Moore MW, Carver-Moore K, and de Sauvage F. Regulation of Thrombopoietin Levels by c-mpl-Mediated Binding to Platelets. Blood. 1996;87(6):2154-61.
Kuter DJ, Rosenberg RD. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood. 1995;85:2720-30.
Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013;98(1):10-23.
Lefrancais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Krummel MF. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105-9.
Rivadeneyra L, Ivani PC, Schattner M, Pozner RG. Así comienza la vida plaquetaria: un viaje desde los megacariocitos medulares a las plaquetas circulantes. Acta Bioquímica Clínica Latinoamericana. 2016;50(2):233-45.
Miyawaki K, Iwasaki H, Jiromaru T, Kusumoto H, Yurino A, Sugio T, Mori Y. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood. 2017; 129(25):3332-43.
Bluteau D, Lordier L, Di Stefano A, Chang Y, Raslova H, Debili N, Vainchenker W. Regulation of megacariocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis. 2009;7:227-34.
Machlus KR, Italiano JE. The incredible journey: From megakaryocyte development to platelet formation. Journal of Cell Biology. 2013;201(6):785-96.
Mazzi S, Lordier L, Debili N, Raslova H, Vainchenker W. Megakariocyte and polyploidization. Experimental Hematology. 2018;57:1-13.
Ravid K, Lu J, Zimmet JM, Jones MR. Roads to polyploidy: the Megakariocyte example. Journal of Cellular Physiology. 2002;190:7-20.
Liu ZJ, Italiano J, Ferrer-Marin F, Gutti R, Bailey M, Poterjoy B, Sola-Visner M. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood. 2011;117(15):4106-17.
Roy L, Coullin P, Vitrat N, Hellio R, Debili N, Weinstein J, Vainchenker W. Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes. Blood. 2001;97(8):2238-47.
Vitrat N, Cohen-Solal K, Pique C, LeCouedic JP, Norol F, Larsen AK, Debili N. Endomitosis of human megakaryocytes are due to abortive mitosis. Blood. 1998;91(10):3711-3723.
Papadantonakis N, Makitalo M, McCrann D, Liu K, Nguyen H, Martin G, Ravid K. Direct visualization of the endomitotic cell cycle in living megakaryocytes: differential patterns in low and high ploidy cells. Cell Cycle. 2008; 7(15):2352-6.
Lordier L, Pan J, Naim V, Jalil A, Badirou I, Rameau P, Chang Y. Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell cycle. 2012 (A); 11(23):4385-9.
Potts KS, Sargeant TJ, Markham JF, Shi W, Biben C, Josefsson EC, Kile BT. A lineage of diploid platelet-forming cells precedes polyploid megakaryocyte formation in the mouse embryo. Blood. 2014;124(17):2725-9.
Pandit SK, Westendorp B, de Bruin A. Physiological signifi- cance of polyploidization in mammalian cells. Trends Cell Biol. 2013;23:556-66.
Ru Y, Zhao S, Dong S, Yang Y, Eyden B. On the maturation of megakaryocytes: A review with original observations on human in vivo cells emphasizing morphology and ultrastructure. Ultrastruct Pathol. 2015;39(2):79-87.
King SM, Reed GL. Development of platelet secretory granules. Seminars in Cell & Developmental Biology. 2002; 12:293-302.
Israels SJ, McMillan EM, Robertson C, Singhory S, McNicol A. The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thromb Haemost. 1996,75:623-9.
Dell’Angelica E, Mullins C, Caplan S, Bonifacino J. Lysosome- related organelles. The FASEB Journal. 2000;14(10): 1265-78.
Heijnen H, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma JJ. Multivesicular Bodies Are an Intermediate Stage in the Formation of Platelet a-Granules. Blood. 1998;91(7):2313-25.
Youssefian T, Cramer EM. Megakaryocyte dense granule components are sorted in multivesicular bodies. Blood. 2000;95(12):4004-7.
Italiano JE, Battinelli M. Selective sorting of alpha-granule proteins. Journal of Thrombosis and Haemostasis; 2009; 7(1):173-6.
Kahr WH. Molecular Triggers of Granule Formation in Megakaryocytes and Platelets. Blood. 2012;120(21):SCI-34 LP-SCI-34.
Louache F, Debili N, Cramer E, Breton-Gorius J, Vainchenker W. Fibrinogen is not synthesized by human megakaryocytes. Blood. 1991;77:311-6.
Flaumenhaft R. Monitoring granule traffic in megakaryocytes. Blood. 2012;120(19):3869-70.
Schweitzer KM, Dräger AM, van der Valk P, Thijsen SF, Zevenbergen A, Theijsmeijer AP, van der Schoot CE, Langenhuijsen MM. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol. 1996;148:165-75.
Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood. 2014;124:277-86.
Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol. 2000;184:58-69.
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvir-onment. Cell Adh Migr. 2014;8:563-77.
Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64-71.
Schachtner H, Calaminus SD, Sinclair A, Monypenny J, Blundell MP, Leon C, et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood. 2013:121:2542-52.
Malara A, Balduini A. Blood platelet production and morphology. Thromb Res. 2012;129:241-44.
Münzer P, Walker-Allgaier B, Geue S, Langhauser F, Geuss E, Stegner D, et al. CK2b regulates thrombopoiesis and Ca21-triggered platelet activation in arterial thrombosis. Blood. 2017;130:2774-85.
Patel SR, Hartwig JH, Italiano JE. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005; 115:3348-54.
Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317:1767-70.
Zhang L, Orban M, Lorenz M, Barocke V, Braun D, Urtz N, et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med. 2012;209: 2165-81.
Mostafa SS, Miller WM, Papoutsakis ET. Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br J Haematol. 2000;111:879-89.
Chen S, Du C, Shen M, Zhao G, Xu Y, Yang K, et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood. 2016;127:1024-35.
Kosaki, G. In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol. 2005;81:208-19.
Kosaki G. Platelet production by megakaryocytes: protoplatelet theory justifies cytoplasmic fragmentation model. Int J Hematol. 2008;88(3):255-67.
De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Bloodñ 2002; 100:1310-17.
Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209:453-66.
Jurk and Kehrel. Platelets: physiology and biochemistry. Sem Thromb Haemost 2005;31(4):381-92.
Carrillo-Mora P, González-Villalva A, Macías-Hernández SI, Pineda-Villaseñor C. Plasma rico en plaquetas. ¿Herramienta versátil de la medicina regenerativa? Cirugía y Cirujanos. 2013;81:74-82.
Koupenova M, Clancy L, Corkrey HA, Freedman HE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circulation Research. 2018;122:337-51.
Bord S, Frith E, Ireland DC, Scott MA, Craig JIO, Compston JE. Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol. 2004;126:244-51.
Bord S, Frith E, Ireland DC, Scott MA, Craig JI, Compston JE. Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone. 2005;36:812-9.
Kacena MA, Ciovacco WA. Megakaryocyte-Bone Cell Interactions in: Choi Y. Osteoimmunology. Advances in Experimental Medicine. 2010;658:31-51.
Beeton CA, Bord S, Ireland D, Compston JE. Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone. 2006;39:985-90.
Chagraoui H, Tulliez M, Smayra T, Komura E, Giraudier S, Yun T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood. 2003;101:2983-29.
Kacena MA, Gundberg CM, Kacena WJ, et al. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties. Journal of cellular physiology. 2013;228(7):1594-600.
Malara A, Abbonante V, Di Buduo C, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci. 2015;72(8):1517-36.
Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He X, Ahamed J, Li L. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine. 2014;20:1321-6.
Olson T, Caselli A, Otsuru, Hofmann T, Williams R, Paolucci P, Dominici M, Horwitz E. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013 Jun 27;121(26):5238-49.
Bruns I, Lucas D, Pinho S, Ahmed J, Lambert M, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine. 2014;20:1315-20.
Mohamad S, Xu L, Ghosh J, Childress P, Abeysekera I, Himes E, Wu H, Alvarez M, Davis K, Aguilar-Perez A, Min Hong J, Bruzzaniti A, Kacena M, Srour E. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Advances. 2017;1:2520-8.
Vannucchi AM, Bianchi L, Paoletti F, Pancrazzi A, Nishikawa T, Zingariello M, Baldassarre AD. Rana RA, Lorenzini R, Alfani E, Migliaccio G an Migliaccio AR. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105(9):3493-501.
Papadantonakis N, Matsuura S and Ravid K. Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood. 2012;120:1774-81.