2018, Number 6
<< Back Next >>
Rev Fac Med UNAM 2018; 61 (6)
Use and application of 3D printing and bioimpression technology in medicine
César-Juárez ÁA, Olivos-Meza A, Landa-Solís, Cárdenas-Soria VH, Silva-Bermúdez PS, Suárez AC, Olivos DB, Ibarra-Ponce LJC
Language: Spanish
References: 39
Page: 43-51
PDF size: 265.80 Kb.
ABSTRACT
In today's world, so-called "addition manufacturing technologies"
or 3D printing also called rapid prototyping have
transcended the borders of almost every field of science and
medicine is no exception. It is not surprising that its exploration
for practical uses is increasing. In medicine, this technology
of printing by addition has evolved to bioprinting, which
occurs by a special process, from cells grown in a laboratory,
which makes possible its transformation into a type of organs
tailored to the patient.
The three-dimensional impression of human organs requires
take samples of tissues or stem cells from the patient, which
are grown in the laboratory waiting to multiply or differentiate
to other cell lines; then, to create said object, a solid
material at room temperature and with a known melting
point is applied layer by layer.
Currently the use of this technology uses the medical images
of patients trying to preserve the anatomy of the structures
that they want to reproduce. In this article the bases and
the potential use of this technology in the medical area will
be addressed.
REFERENCES
PubMed-MeSH Major Topic. “Printing, Three-Dimensional”. [Consultado: 25-agosto-2017]. Disponible en: https:// www.ncbi.nlm.nih.gov/mesh/?term=Printing%2C+Three- Dimensional
Takagishi K, Umezu S. Development of the improving process for the 3D printed structure. Sci. Rep.-UK. 2017; 7:39852.
Seol YJ, Kang TY, Cho DW. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter. 2012;8:1730-5.
Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: A 21st century manufacturing paradigm. Biofabrication. 2009;1:022001.
García-Valadez L, Espinoza-Gutiérrez A, Rivas-Montero J, Hernández-Méndez V, Santiago-García A, Banegas- Ruiz R, Cesar-Juárez A, Palmieri-Bouchan R. Impresión de modelos 3D para fracturas de radio distal: un estudio piloto en el Instituto Nacional de Rehabilitación. Rev Sanid Milit Mex. 2017;71:366-73.
Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Radiol. 2009; 19(Suppl 1):S397.
D’Urso P, Earwaker W, Barker T, Redmond M, Thompson R, Effeney D, Tomlinson F Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg. 2000; 53:200-204.
Faber J, Berto P, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop. 2006; 129:583-589.
Mavili M, Canter H, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18:740.
Muller A, Krishnan K, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14:899-914.
Poukens J, Haex J, Riediger D. The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003; 8:146-154.
Wagner J, Baack B, Brown G, Kelly J Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg. 2004;62:898-901.
Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg. 2004;100:139-45.
Giesel FL, Hart AR, Hahn HK, Wignall E, Rengier F, Talanow R, et al. 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol. 2009;16:610-7.
Paiva W, Amorim R, Bezerra D, Masini M. Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr. 2007;65:443-5.
Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H. 2007;221:407-16.
Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388-94.
Hiramatsu H, Yamaguchi H, Nimi S, Ono H. Rapid proto- typing of the larynx for laryngeal frame work surgery. Nippon Jibiinkoka Gakkai Kaiho. 2004;107:949-955.
D’Urso P, Barker T, Earwaker W, Bruce L, A M, Arvier J, Effeney D. Stereolithographic biomodelling incranio- maxillofacial surgery: a prospective trial. J Craniomaxillo- fac Surg. 1999;27:30-7.
Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications Int J CARS. 2010;5:335.
De Zélicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng. 2005;127:204-7.
Dai K, Yan M, Zhu Z, Sun Y. Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthro- plasty. 2007;22:981-6.
Harrysson O, Hosni Y, Nayfeh J. Custom-designed orthopedic implants evaluated using finite element analysis of patient specific computed tomography data: femoral- component case study. BMC Musculoskelet Disord. 2007;8:91.
He J, Li D, Lu B, Wang Z, Tao Z. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/ CAM techniques. Proc Inst Mech Eng. 2006;220:823-30.
Wang Z, Teng Y, Li D. Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing. 2004 Sep;18:347-351.
Pub Med-MeSH Major Topic. “Regenerative Medicine”. [Consultado: 25-agosto-2017]. Disponible en: https:// www.ncbi.nlm.nih.gov/mesh/?term=Regenerative+Medicine
Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2:014110.
Pub Med-MeSH Major Topic. “Bioprinting”. [Consultado: 25-agosto-2017]. Disponible en: https://www.ncbi. nlm.nih.gov/mesh/?term=Bioprinting
Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, et al. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006 Dec;12(12):3265-83.
Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921-6.
Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini- Tenzer A, Weisstanner M, Odermatt B, et al. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol. 2010; 148:46-55.
Murphy S, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014;32:773-85.
Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A. 2013;101:272-84.
Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005; 26:93-9.
Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication. 2009 Mar;1(1):015003. doi: 10.1088/1758-5082/1/1/015003.
Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010 Jul;6(7):2494-500. doi: 10.1016/j.actbio.2009.09.029.
Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK. Efficient transfection method for primary cells. Tissue Eng. 2002;8:235-45.
Yu Z, Liu M, Fu P, Xie M, Wang W, Luo X. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord. Neurochem Int. 2012 Dec;61(7):1114-20. doi: 10.1016/j. neuint.2012.08.003.
Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, et al. In vivo bioprinting for computer- and robotic- assisted medical intervention: preliminary study in mice. Biofabrication. 2010 Mar;2(1):014101. doi: 10.1088/1758- 5082/2/1/014101.