2018, Number 6
<< Back Next >>
Rev Fac Med UNAM 2018; 61 (6)
Human microbiome
Moreno CMC, Valladares-García J, Halabe-Cherem J
Language: Spanish
References: 103
Page: 7-19
PDF size: 346.50 Kb.
ABSTRACT
The study of the human microbiome has grown exponentially
in the last decade and its importance in the human
health-disease process is becoming more and more evident.
It has been implicated in multiple autoimmune and autoinflammatory
diseases, cancer, obesity, metabolic syndrome
and cardiovascular risk. The transgression of the normal composition
of the microbiome can sometimes occur due to the
abuse of drugs such as antibiotics and proton pump inhibitors,
among others. Re-establishing the balance between
the microbiota and the human being must be a priority to
maintain the health of the individual.
REFERENCES
Young VB. The role of the microbiome in human health and disease: An introduction for clinicians. Vol. 356, BMJ (Online). 2017.
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol [Internet]. 2014;32(8):834-41. Disponible en: http://www.nature.com/doifinder/10.1038/ nbt.2942.
Kuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. Synthetic long read sequencing reveals the composition and intraspecies diversity of the human microbiome. Nat Biotechnol. 2016;34(1):64-9.
Lynch S V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med [Internet]. 2016;375(24):2369-79. Disponible en: https://www.nejm. org/doi/full/10.1056/NEJMra1600266
Nih T, Working HMP. The NIH Human Microbiome Project. Genome Res [Internet]. 2009;19(12):2317-23. Disponible en: http://genome.cshlp.org/content/19/12/2317. full.pdf+html.
Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome [Internet]. 2015;3(1):31. doi.org/10.1186/s40168-015-0094-5.
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva- Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690-703.
Azad MB, Mph TK, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants : profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385-94.
Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One [Internet]. 2016;11(5):1-16. doi.org/10.1371/ journal.pone.0154090
Liu Z, Liu HY, Zhou H, Zhan Q, Lai W, Zeng Q, et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol. 2017;8(SEP):1-11.
Giménez-Bastida JA, Martínez Carreras L, Moya-Pérez A, Laparra Llopis JM. Pharmacological Efficacy/Toxicity of Drugs: A Comprehensive Update About the Dynamic Interplay of Microbes. Journal of Pharmaceutical Sciences [Internet]. 2017. doi.org/10.1016/j.xphs.2017.10.031
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nature [Internet]. 2018;1-13. doi.org/10.1038/nrmicro. 2017.157
Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep [Internet]. 2017;34:1302-31. doi.org/10.1039/ C7NP00021A.
Joyner PM, Liu J, Zhang Z, Merritt J, Qi F, Cichewicz RH. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem [Internet]. 2010;8(24):5486. Disponible en: http://xlink.rsc.org/?DOI=c0ob00579g
Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology [Internet]. 2009 May;136(6):2015-31. http://www.ncbi.nlm.nih. gov/pubmed/19462507.
Gibson GR, Probert HM, Loo J Van, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev [Internet]. 2004;17(2):259. Disponible en: http://www.journals. cambridge.org/abstract_S0954422404000204.
Shen Z, Zhu C, Quan Y, Yang Z, Wu S, Luo W, et al. Relationship between intestinal microbiota and ulcerative colitis : Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol. 2018;24(1):5-14.
Rinaldi E, Consonni A, Guidesi E, Elli M, Mantegazza R, Baggi F. Gut microbiota and probiotic: novel immune system modulators in myasthenia gravis? Ann N Y Acad Sci. 2018;(Myasthenia Gravis and Related Disorders):1-10.
Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews. 2017;1-17.
Shen NT, Maw A, Tmanova LL, Pino A, Ancy K, Crawford C V, et al. Timely Use of Probiotics in Hospitalized Adults Prevents Clostridium difficile Infection: A Systematic Review With Meta-Regression Analysis. Gastroenterology [Internet]. 2017 Jun;152(8):1889-1900.e9. doi.org/10.1053/j. gastro.2017.02.003
Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014; 64(4):897-903.
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature [Internet]. 2017 Nov 15;551(7682):585-9. doi.org/10.1038/nature24628.
Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M. A systematic review of the safety of probiotics. Expert Opin Drug Saf [Internet]. 2014 Feb 3;13(2):227-39. Disponible en: http://www.tandfonline.com/doi/full/10.1517/14740338. 2014.872627.
Brandt LJ, Borody TJ. Endoscopic Fecal Microbiota Transplantation: “‘First-Line’” Treatment for Severe Clostridium difficile Infection? J Clin Gastroenterol. 2011;45(8):655-7.
Millan B, Park H, Hotte N, Mathieu O, Burguiere P, Tompkins TA, et al. Fecal Microbial Transplants Reduce Antibiotic- resistant Genes in Patients with Recurrent Clostridium difficile Infection. Clin Infect Dis. 2016;62(12):1479-86.
Suchodolski J, Jergens A. Recent Advances and Understanding of Using Probiotic-Based Interventions to Restore Homeostasis of the Microbiome for the Prevention / Therapy of Bacterial Diseases. Microbiol Spectr. 2016;4(2):1-14.
Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med [Internet]. 2016;11(1):56-61. Disponible en: https://www. journalofhospitalmedicine.com/jhospmed/article/127984/ fecal-microbiota-transplant-cdi
Halabe-Cherem J, Hoyo-Ulloa I. Home fecal transplantation in elderly women [Internet]. Gaceta Medica de México. 2014;150:106-7. Disponible en: https://www.anmm.org. mx/GMM/2014/n1/GMM_150_2014_1_106-107.pdf
Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, et al. Update on FMT 2015: Indications, Methodologies, Mechanisms and Outlook Members. Gastroenterology. 2016;149(1):223-37.
Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012: 1-14.
Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, et al. Fecal microbiota transplantation broadening its appli- cation beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102-11.
Kulecka M, Paziewska A, Zeber-Lubecka N, Ambrozkiewicz F, Kopczynski M, Kuklinska U, et al. Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice. Nutr Metab [Internet]. 2016 Dec 23;13(1):57. doi.org/10.1186/s12986-016-0116-8.
Alang N, Kelly CR. Weight Gain After Fecal Microbiota Transplantation. Open Forum Infect Dis. 2015;2(1):1-2.
Brown JM, Hazen SL. The Gut Microbial Endocrine Organ: Bacterially-Derived Signals Driving Cardiometabolic Diseases. Annu Rev Med. 2015;66:343-59.
Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Investig. 2014; 124(10):4204-11.
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol [Internet]. 2018;1-11. doi. org/10.1038/nrmicro.2017.149.
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Li L, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111-24.
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature [Internet]. 2011;472(7341):57-65. Disponible en: http://dx.doi.org/10.1038/ nature09922.
Seldin MM, Meng Y, Qi H, Zhu WF, Wang Z, Hazen SL, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κb. J Am Heart Assoc. 2016;5(2):1- 12.
Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell [Internet]. 2015 Dec;163(7):1585-95. Disponible en: http:// www.tandfonline.com/doi/full/10.1517/13543784.2016 .1161756.
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol Endocrinol [Internet]. 2014 Aug; 28(8):1221-38. Disponible en: https://academic.oup.com/ mend/article-lookup/doi/10.1210/me.2014-1108.
Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am [Internet]. 2017;46(1):77-89. Disponible en: http://dx.doi.org/10.1016/j. gtc.2016.09.007.
Galligan JJ. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil [Internet]. 2018 Feb;30(2):e13283. Disponible en: http://doi.wiley. com/10.1111/nmo.13283.
Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab. 2011;96(9):1409-17.
Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature [Internet]. 2017;549(7670):48-53. Disponible en: http://dx.doi. org/10.1038/nature23874.
Zhang P, Meng X, Li D, Calderone R, Mao D, Sui B. Commensal homeostasis of gut microbiota-host for the impact of obesity. Front Physiol. 2018;8:1-7.
Moran-Ramos S, López-Contreras BE, Canizales-Quinteros S. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality? Arch Med Res. 2017.
Ley R, Turnbaugh P, Klein S, Gordon J. Microbial ecology: human gut microbes associated with obesity. Nature [Internet]. 2006;444(7122):1022-3. Disponible en: http:// europepmc.org/abstract/MED/17183309.
Rosenbaum M, Knight R, Leibel RL, Science C, Jolla L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2016;26(9):493-501.
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, et al. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond) [Internet]. 2016;13(1):14. Disponible en: http://www.nutritionandmetabolism. com/content/13/1/14.
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585-8.
Heianza Y, Sun D, Smith SR, Bray GA, Sacks FM, Qi L. Changes in Gut Microbiota-Related Metabolites and Longterm Successful Weight Loss in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes Care [Internet]. 2018;dc172108. Disponible en: http://care.diabetesjournals. org/lookup/doi/10.2337/dc17-2108.
Ejtahed H-S, Angoorani P, Hasani-Ranjbar S, Siadat S-D, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: A systematic review. Microb Pathog [Internet]. 2018; Disponible en: http://linkinghub.elsevier.com/retrieve/pii/ S088240101730270X.
He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Vol. 7, Cell and Bioscience. BioMed Central; 2017. p. 1-14.
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764-75.
Allen SJ, Martinez EG, Gregorio G V, Dans LF. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev [Internet]. 2010 Nov 10;(4). Disponible en: http:// doi.wiley.com/10.1002/14651858.CD003048.pub3.
Huang Y, Liu P, Chen Y, Nong B, Huang I-F, Hsieh K-S, et al. Three-Combination Probiotics Therapy in Children With Salmonella and Rotavirus Gastroenteritis. J Clin Gastroenterol [Internet]. 2014 Jan;48(1):37-42. Disponible en: http://content. wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage& an=00004836-201401000-00010.
Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic- containing products on stool frequency and intestinal transit in constipated adults: Systematic review and meta- analysis of randomized controlled trials. Vol. 30, Annals of Gastroenterology. 2017. p. 629-39.
Rajilić-Stojanović M, Jonkers DM, Salonen A, Hanevik K, Raes J, Jalanka J, et al. Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena? Am J Gastroenterol [Internet]. 2015 Feb 27;110(2):278-87. Disponible en: http://www.nature.com/doifinder/10.1038/ ajg.2014.427.
Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J Infect [Internet]. 2018 Feb;76(2):111-20. Disponible en: https://doi.org/10.1016/j.jinf.2017.12.013.
Brusca SB, Abramson SB, Scher JU. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol. 2014;26(1):101-7.
Abdollahi-roodsaz S, Abramson SB, Scher JU. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nature [Internet]. 2016;12. Disponible en: http://dx.doi.org/10.1038/nrrheum.2016.68.
Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The Intestinal Microbiome in Early Life: Health and Disease. Front Immunol [Internet]. 2014 Sep 5;5(September): 1-18. Disponible en: http://journal.frontiersin.org/ article/10.3389/fimmu.2014.00427/abstract.
Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018; 360:j5145.
Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun [Internet]. 2018;9(1):141. Disponible en: http://dx.doi.org/10.1038/ s41467-017-02573-2.
Katz-Agranov N, Zandman-Goddard G. The microbiome and systemic lupus erythematosus. Immunol Res. 2017; 65(2):432-7.
Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome [Internet]. 2017;5(1):73. Disponible en: http:// microbiomejournal.biomedcentral.com/articles/10.1186/ s40168-017-0300-8.
Or. Known and Probable Human Carcinogens [Internet]. American Cancer Society. 2018. Disponible en: https:// www.cancer.org/cancer/cancer-causes/general-info/knownand- probable-human-carcinogens.html.
Brawner KM, Morrow CD, Smith PD. Gastric microbiome and gastric cancer. Vol. 20, Cancer Journal (United States). 2014. p. 211-6.
Schwabe RF, Jobin C. The microbiome and cancer [Internet]. Vol. 13, Nature Reviews Cancer. Nature Publishing Group; 2013. p. 800-12. Disponible en: http://dx.doi. org/10.1038/nrc3610.
Shahanavaj K, Gil-Bazo I, Castiglia M, Bronte G, Passiglia F, Carreca AP, et al. Cancer and the microbiome: potential applications as new tumor biomarker. Expert Rev Anticancer Ther [Internet]. 2015 Mar 4;15(3):317-30. Disponible en: http://www.tandfonline.com/doi/full/10.1586/147371 40.2015.992785.
Wang L, Ganly I. The Oral Microbiome and Oral Cancer. Clin Lab Med [Internet]. 2014 Dec;34(4):711-9. Disponible en: http://dx.doi.org/10.1016/j.cll.2014.08.004.
Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis [Internet]. 2014 Feb 1;35(2):249-55. Disponible en: https://academic.oup.com/carcin/article-lookup/ doi/10.1093/carcin/bgt392.
Wynendaele E, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides [Internet]. 2015 Feb;64:40-8. Disponible en: http:// dx.doi.org/10.1016/j.peptides.2014.12.009.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol [Internet]. 2014 May;30(3):332-8. Disponible en: http://content. wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage &an=00001574-201405000-00018.
Phelan JP, Reen FJ, Caparros-Martin JA, O’Connor R, O’Gara F. Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget [Internet]. 2017 Dec 29;8(70):115736- 47. Disponible en: http://www.oncotarget.com/index.php?- journal=oncotarget&page=article&op=download&path %5B%5D=22803&path%5B%5D=71989%0Ahttp://ovidsp. ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexb& NEWS=N&AN=620025322.
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, et al. Peptides as quorum sensing molecules: Measurement techniques and obtained levels in vitro and in vivo. Front Neurosci. 2017;11(APR):1-18.
Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, et al. Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell [Internet]. 2012;21(4):504-16. Disponible en: http://dx.doi. org/10.1016/j.ccr.2012.02.007.
Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med [Internet]. 2012;209(9):1671-87. Disponible en: http://www.jem.org/lookup/doi/10.1084/ jem.20111706.
Pushalkar S, Saxena D, Miller G. Pancreatic Cancer, Inflammation, and Microbiome. Cancer J. 2014;20(3):195- 202.
Onodera H. Less Invasive Screening for Colorectal Can- cer by Microbiota Analysis: Is it a Reality or an Illusion? EBioMedicine [Internet]. 2017 Nov;25:5-6. Disponible en: https://doi.org/10.1016/j.ebiom.2017.10.020.
Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab [Internet]. 2017 Jul;26(1):110-30. Disponible en: http://dx.doi.org/10.1016/j. cmet.2017.05.008.
Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism [Internet]. Vol. 69, Pharmacological Research. Elsevier Ltd; 2013. p. 21-31. Disponible en: http://dx.doi.org/10.1016/j.phrs.2012.07.009.
Delzenne NM, Bindels LB. Gut microbiota in 2017: Contribution of gut microbiota-host cooperation to drug efficacy. Nat Rev Gastroenterol Hepatol [Internet]. 2017; Disponible en: http://dx.doi.org/10.1038/nrgastro.2017.170.
Klaassen CD, Cui JY. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab Dispos [Internet]. 2015 Sep 1;43(10):1505-21. Disponible en: http://dmd.aspetjournals.org/cgi/doi/10.1124/ dmd.115.065698.
Thiele I, Clancy CM, Heinken A, Fleming RMT. Quantitative systems pharmacology and the personalized drug-microbiota- diet axis. Curr Opin Syst Biol [Internet]. 2017 Aug;4:43-52. Disponible en: http://dx.doi.org/10.1016/j. coisb.2017.06.001.
Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science (80- ) [Internet]. 2013 Jul 19;341(6143):295-8. Disponible en: http://www.sciencemag. org/cgi/doi/10.1126/science.1235872.
Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci [Internet]. 2009 Aug 25;106(34):14728-33. Disponible en: http://www.pnas.org/ cgi/doi/10.1073/pnas.0904489106.
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets T V., et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science (80- ) [Internet]. 2018 Jan 5;359(6371):97- 103. Disponible en: http://www.sciencemag.org/lookup/ doi/10.1126/science.aan4236.
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD- 1-based immunotherapy against epithelial tumors. Science (80- ) [Internet]. 2018 Jan 5;359(6371):91-7. Disponible en: http://science.sciencemag.org/content/359/6371/91.
Ledford H. Gut microbes can shape responses to cancer immunotherapy. Nature [Internet]. 2017 Nov 2;319(5):430-1. Disponible en: http://www.nature.com/doifinder/10.1038/ nature.2017.22938.
Maier L, Typas A. Systematically investigating the impact of medication on the gut microbiome. Curr Opin Microbiol [Internet]. 2017 Oct;39:128-35. Disponible en: http:// dx.doi.org/10.1016/j.mib.2017.11.001.
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science (80- ) [Internet]. 2016 Apr 29;352(6285):560- 4. Disponible en: http://www.sciencemag.org/lookup/ doi/10.1126/science.aad3503.
Macedo D, Filho AJMC, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HVN, et al. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord [Internet]. 2017 Jan;208:22-32. Disponible en: http://dx.doi.org/10.1016/j.jad.2016.09.012.
Mishiro T, Oka K, Kuroki Y, Takahashi M, Tatsumi K, Saitoh T, et al. Proton pump inhibitor alters oral microbiome in gastrointestinal tract of healthy volunteers. J Gastroenterol Hepatol [Internet]. 2017 Feb 14; Disponible en: http://doi.wiley.com/10.1111/jgh.14040.
Kuntz TM, Gilbert JA. Introducing the Microbiome into Precision Medicine [Internet]. Vol. 38, Trends in Pharmacological Sciences. Elsevier Ltd; 2017. p. 81-91. Disponible en: http://dx.doi.org/10.1016/j.tips.2016.10.001.
Mueller UG, Sachs JL. Engineering Microbiomes to Improve Plant and Animal Health. Trends Microbiol [Internet]. 2015 Oct;23(10):606-17. Disponible en: http://dx.doi. org/10.1016/j.tim.2015.07.009.
Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: Current applications and its future. Biotechnol J [Internet]. 2017 Mar;12(3):1600099. Disponible en: http:// doi.wiley.com/10.1002/biot.201600099.
Hofer U. Microbiome: Precision engineering of gut metabolites. Nat Rev Microbiol [Internet]. 2017 Dec 8;16(1):2-3. Disponible en: http://dx.doi.org/10.1038/nrmicro.2017.159.
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep [Internet]. 2006 Jul;7(7):688-93. Disponible en: http://embor.embopress.org/cgi/doi/10.1038/sj.embor. 7400731.
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci [Internet]. 2007;104(3):979-84. Disponible en: http://www.pnas.org/ lookup/doi/10.1073/pnas.0605374104.
Morris A. Gut microbiota: Fibre restores healthy gut microbiota. Nat Rev Endocrinol [Internet]. 2017;14(2):63-63. Disponible en: http://www.nature.com/doifinder/10.1038/ nrendo.2017.182.
Johnson-King B, Terry SF. Future of Microbiomes Through the National Microbiome Initiative. Genet Test Mol Biomarkers [Internet]. 2016 Oct;20(10):561-2. Disponible en: http:// www.ncbi.nlm.nih.gov/pubmed/27749134%5Cnhttp://online. liebertpub.com/doi/10.1089/gtmb.2016.29022.sjt.