2018, Number 3
<< Back Next >>
Gac Med Mex 2018; 154 (3)
Nanodevices for the prevention and treatment of cardiovascular diseases
Vélez-Reséndiz JM, Vélez-Arvízu JJ
Language: Spanish
References: 51
Page: 358-367
PDF size: 358.85 Kb.
ABSTRACT
Currently, cardiovascular disease represents the main cause of morbidity and mortality worldwide; the application of nanotechnology
holds great promise for its prevention and treatment. Nanodevices (“smart drugs”) are currently being developed for
directed and controlled delivery of drugs to specific sites in the body, such as cells, tissues, blood vessels and the heart, as
well as for diagnosis and early detection of cardiovascular conditions and patient-individualized treatment. Another application
of nanodevices is the delivery of drugs to correct defective protein bad coupling or binding. With potent super-effects, nanoparticles
should be able to elicit therapeutic effects at lower doses and prolonged periods. The manufacture of nanodevices
and nanocarriers should be with a comprehensive approach that takes general properties into account in order to assess for
biocompatibility and, therefore, avoid adverse and toxic effects. Intensified research in this field will help to significantly reduce
morbidity and mortality caused by cardiovascular disease.
REFERENCES
Global status report on noncommunicable diseases 2010. Ginebra, Suiza: World Health Organization; 2011.
Mathers CD, Loncar D. Protections of global mortality and burden of disease from 2002 at 2030. PLoS Med. 2006;3(11):e442.
Tyler PD, Kang PM. Diagnostic and therapeutic nanoparticles in cardiovascular diseases. Curr Pharm Des. 2015;21(42):6070-6080.
Chauvierre C, Letourneur D. The European project NanoAthero to fight cardiovascular diseases using nanotechnologies. Nanomedicine (Lond). 2015; 10(22):3391-400.
Kransnoslobodtsev AV, Shlyakhtenko LS, Ukraintsev E, Zaikova TO, Keana JF, Lyubcchenko YL. Nanomedicine and protein misfolding diseases. Nanomedicine. 2005;1(4):300-305.
Binsalamah ZM, Paul A, Prakash S, Shum-Tim D. Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther. 2012;10(6):805-815.
Bell IR, Ives JA, Jonas WB. Nonlinear effects of nanoparticles: biological variability from hermetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response. 2013;12(2):202-232.
Wu J, Kamaly N, Shi J, Zhao L, Xiao Z, Hollett G, et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew Chem Int Ed Engl. 2014;53(34):8975-8979.
Rodríguez-Vila B, Tarjuelo-Gutiérrez J, Sánchez-González P, Verbrugghe P, Fourneau I, Maleux G, et al. Automated delineation of vessel wall and thrombus boundaries of abdominal aortic aneurysms using multispectral MR images. Comput Math Methods Med. 2015;2015:202539.
Ferreira MP, Balasubramanian V, Hirvonen J, Ruskoaho H, Santos HA. Advanced nanomedicines for the treatment and diagnosis of myocardial infarction and heart failure. Curr Drug Targets. 2015;16(14):1682-1697.
Tang Y, Gan X, Cheheltani R, Curran E, Lamberti G, Krynska B, et al. Targeted delivery of vascular endothelial growth factor improves stem cell therapy in a rat myocardial infarction model. Nanomedicine. 2014;10(8):1711-1718.
Pu KM, Sava P, González AL. Microvascular targets for anti-fibrotic therapeutics. Yale J Biol Med. 2013;86(4):537-554.
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vasculartargeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO. 2014;8(5): 4100-4132.
Gadde S, Even-Or O, Kamaly N, Hasija A, Gagnon PG, Adusumilli KH, et al. Development of therapeutic polymeric nanoparticles for the resolution of inflammation. Adv Health Mater. 2014;3(9):1448-1456.
Marrache S, Pathnak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, et al. Nanocarriers for tracking and treating diseases. Curr Med Chem. 2013;20(28):3500-3514.
Howard MD, Hood ED, Zern B, Shuvaev VV, Grosser T, Muzykantov VR. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol. 2014;54:205-226.
Shuvaev VV, Han J, Tliba S, Arguiri E, Christofidou-Solomidou M, Ramírez SH, et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLoS One. 2013;8(10):e77002.
Schiener M, Hossann M, Viola JR, Ortega-Gomez A, Weber C, Lauber K, et al. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med. 2014;20(5):271-281.
Marrache S, Dhar S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 2013;110(23):9445-9450.
Karagkiozaki V, Logothetidis S, Pappa AM. Nanomedicine for atherosclerosis: molecular imaging and treatment. J Biomed Nanotechnol. 2015;11(2):191-210.
Lewis DR, Petersen LK, York AW, Zablocki KR, Joseph LB, Kholodovych V, et al. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Proc Natl Acad Sci U S A. 2015;112(9):2693-2698.
Lanza GA. Angina pectoris and myocardial ischemia in the absence of obstructive coronary artery disease: role of diagnostic tests. Curr Cardiol Rep. 2016;18(2):15.
Mulder WJ, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med. 2014;6(239):239sr1.
Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.
Du AW, Stenzel MH. Drug carriers for the delivery of therapeutic peptides. Biomacromolecules. 2014;15(4):1097-1114.
Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014;4(2):175-200.
Karagkiozaki V, Karagiannidis PG, Kalfagiannis N, Kavatzikidou P, Patsalas P, Georgiou D, et al. Novel nanostructured biomaterials: implications for coronary stent thrombosis. Int J Nanomedicine. 2012;7: 6063-6076.
Rolim T, Cancino J, Zucolotto V. A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomed Microdevices. 2015;17(1):3.
Lanza GM, Moonen C, Baker JR, Chang E, Cheng Z, Grodzinski P, et al. Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(1):1-14.
Weissleder R, Nahrendorf M. Advancing biomedical imaging. Proc Natl Acad Sci U S A. 2015;112(47):14424-14428.
Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199-205.
Aguirre AD, Vinegoni C, Sebas M, Weissleder R. Intravital imaging of cardiac function at the single-cell level. Proc Natl Acad Sci U S A. 2014;111(31):11257-11262.
Vinegoni C, Lee S, Aguirre AD, Weissleder R. New techniques for motion- artifact-free in vivo cardiac microscopy. Front Physiol. 2015;6:147.
Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen- targeting gold nanoparticles. Nanomedicine. 2013;9(7):1067-1076.
Chrastina A, Massey KA, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):421-437.
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813-827.
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280-3294.
Jordan C, Shuvaev VV, Bailey M, Muzykantov VR, Dziubla TD. The role of carrier geometry in overcoming biological barriers to drug delivery. Curr Pharm Des. 2016;22(9):1259-1273.
Sundararaj SC, Al-Sabbagh M, Rabek CL, Dziubla TD, Thomas MV, Puleo DA. Comparison of sequential drug release in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2016;104(7):1302-1310.
Ambati J, López AM, Cochran D, Wattamwar P, Bean K, Dziubla TD, et al. Engineered silica nanocarriers as a high-payload delivery vehicle for antioxidant enzymes. Acta Biomater. 2012;8(6):2096-2103.
Hood E, Simone E, Wattamwar P, Dziubla T, Muzykantov V. Nanocarriers for vascular delivery of antioxidants. Nanomedicine (Lond). 2011;6(7):1257-1272.
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater. 2014;3(11):1703-1720.
Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2010;337(6095):738-742.
Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Maturitas. 2012;73(1) 52-60.
Greineder CF, Howard MD, Carnemolla R, Cines DB, Muzykantov VR. Advanced drug delivery systems for antithrombotic agents. Blood. 2013;122(9):1565-1575.
Wadajkar AS, Santimano S, Rahimi M, Yuan B, Banerjee S, Nguyen KT. Deep vein thrombosis: current status and nanotechnology advances. Biotechnol Adv. 2013;31(5) 504-513.
Carnemolla R, Shuvaev VV, Muzykantov VR. Targeting antioxidant and antithrombotic biotherapeutics to endothelium. Semin Thromb Hemost. 2010;36(3):332-342.
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release. 2015;219:576-595.
Korin N, Gounis MJ, Wakhloo AK, Ingber DE. Targeted drug delivery to flow-obstructed vessels using mechanically activated nanotherapeutics. JAMA Neurol. 2015;72(1):119-122.
Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol. 2004;22(8):985-992.
Griffin NM, Schnitzer JE. Chapter 8. Proteomic mapping of the vascular endothelium in vivo for vascular targeting. Methods Enzymol. 2008;445: 177-208.