2018, Number 5
<< Back Next >>
Rev Fac Med UNAM 2018; 61 (5)
Neuroinflammation: the ying-yang of neuroimmunology
Martínez-Tapia RJ, Estrada-Rojo F, Hernández-Chávez AA, Barajas-Martínez A, Islas ES, Navarro L, Chavarría A
Language: Spanish
References: 32
Page: 44-53
PDF size: 399.39 Kb.
ABSTRACT
The field of neuroimmunology has recently had a development,
and its primary goal is to understand the physiological interactions
between the central nervous system (CNS) and the peripheral
immune system. Various data has found that these relations
are more important than what was previously thought. Also, that
both systems are highly dynamic and are intimately connected.
On the other hand, neuroinflammation is activated after any
immune challenge, both inside and outside the CNS, leading to
responses focused on limiting tissue damage and restoration; as
well as being a risk for developing neurodegenerative diseases
when this stimulus remains chronic.
REFERENCES
Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol. 2007;28(1):12-8.
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523(7560):337-41.
Jessen NA, Munk AS, Lundgaard I, Nedergaard M. e Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015;40(12):2583-99.
Engelhardt B, Vajkoczy P, Weller RO. e movers and shapers in immune privilege of the CNS. Nat Immunol. 2017;18(2):123-31.
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015;131:65-86.
Orihuela R, McPherson CA, Harry GJ. Microglial M1/ M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649-65.
Pekny M, Wilhelmsson U, Pekna M. e dual role of astrocyte activation and reactive astrogliosis. Neurosci Lett. 2014;17(565):30-8.
Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20(2):160-72.
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141(3):302-13.
Chavarría A, Cárdenas G. Neuronal influence behind the central nervous system regulation of the immune cells. Front Integr Neurosci. 2013;7:64.
Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol. 2017;18(4): 385-92.
Prinz M, Priller J. e role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20(2):136-44.
Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268-75.
Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain, Behavior, and Immunity. 2013;34:11-6.
Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017;17(1):49-59.
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox signaling neuroinflammation and neurodegeneration. Antioxid Redox Signal. 2017 Jun 6. doi: 10.1089/ars.2017.7099.
e IDF consensus worldwide definition of the metabolic syndrome. Obesity And Metabolism. 2005;(3):47.
Huang P. A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms. 2009;2(5-6): 231-7.
Guillemot-Legris O, Muccioli GC. Obesity-Induced neuroinflammation: Beyond the hypothalamus. Trends Neurosci. 2017;40(4):237-53.
Mazon JN, de Mello AH, Ferreira GK, Rezin GT. e impact of obesity on neurodegenerative diseases. Life Sci. 2017;1(182):22-8.
Zhang P and Tian B. Metabolic syndrome: an important risk factor for Pakinson’s disease. Oxid Med Cell Longev. 2014;729194:1-7.
Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: A new target for disease modification? Prog Neurobiol. 2016;145-146:98-120.
De la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol. 2014;88(4):548-59.
Menon DK, Schwab K, Wright DW, Maas AI; Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position statement: Definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637-40.
Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM. e far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev Neurol. 2017;13(3):171-91.
Sacco R, Kasner S, Broderick J, Caplan L, Connors J, Culebras A, et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064-89.
Centers for Disease Control and Prevention (CDC). “Stroke Facts”. Stroke Varies by Age. [Internet]. [Actualizado: 06 septiembre 2017; citado: 16 noviembre 2017]. Disponible en: https://www.cdc.gov/stroke/facts.htm
Kawabori M, Yenari M. Inflammatory Responses in Brain Ischemia. Current Medicinal Chemistry. 2015; 22(10); 1258-77.
Lou XG, Ding JQ, Chen SD. Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegener. 2010;5(12):1-9.
Taylor R, Sansing L. Microglial Responses after Ischemic Stroke and Intracerebral Hemorrhage. Clin Dev Immunol. 2013; 746068:1-10.
Kim J, Park J, Chang J, Kim S, Lee J. Inflammation after Ischemic Stroke: e Role of Leukocytes and Glial Cells. Experimental Neurobiology. 2016;25(5):241-51.
Jassam Y, Izzy S, Whalen M, McGavern D, El Khoury J. Neuroinmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron. 2017;95(6):1246-65.