2018, Number 1
Next >>
Rev Invest Clin 2018; 70 (1)
Innate Immunity in Coronary Disease. The Role of Interleukin-12 Cytokine Family in Atherosclerosis
Posadas-Sánchez R, Vargas-Alarcón G
Language: English
References: 145
Page: 5-17
PDF size: 173.10 Kb.
ABSTRACT
Atherosclerosis is a chronic, progressive, and multifactorial disease modulated by genetic and environmental factors. In recent
years, the paradigm that explained atherosclerosis as resulting from a complex interaction between factors not accessible to
medical intervention, and modifiable risk factors has changed. In this paradigm, alterations in lipid metabolism were the pivotal
concept of atherosclerosis as a chronic degenerative disease. In the last years, an increasing number of observations have shown
that the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall significantly influence
atherosclerosis. Currently, it is well recognized that the pathogenesis of atherosclerosis and its complications involves the
inflammatory process, which includes the participation of several cytokines. Besides the classic cytokines involved in this process,
the role of the interleukin-12 (IL-12) family has been recently demonstrated. This review describes our current understanding
about the role of the family of IL-12 in atherosclerosis considering the participation of the genes that encode these cytokines in
the genetic susceptibility to developing this disease.
REFERENCES
Spirig R, Tsui J, Shaw S. The emerging role of TLR and innate immunity in cardiovascular disease. Cardiol Res Pract. 2012; 2012:181394.
Nus M, Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert Rev Clin Immunol. 2016;12:1217-37.
Meier P, Meier R, Blanc E. Influence of CD4/CD25+ regulatory T cells on atherogenesis in patients with end-stage kidney disease. Expert Rev Cardiovasc Ther. 2008;6:987-97.
Chen Y, Jian Y, Liu M, et al. Gr-1+ CD11b+ immature myeloid cells (IMC) promote resistance of pro-inflammatory T cells to suppression by regulatory T cells in atherosclerotic Apo E- deficient mice. PLoS One. 2014;9:e108620.
Frostegård J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33-43.
Tedgui A, Mallat Z. Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev. 2006;86:515-81.
Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26:673-85.
Vignali DA, Kuchroo VK. IL-12 family cytokines: Immunological playmakers. Nat Immunol. 2012;13:722-8.
Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M, Yoshimoto T. Expanding Diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family. Front Immunol. 2016;7:479.
Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827-45.
Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A. 1990;87:6808-12.
Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/ interleukin-12-receptor system: Role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495-521.
Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13: 715-25.
Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417-43.
Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007; 450:566-9.
Collison LW, Delgoffe GM, Guy CS, et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol. 2012;13:290-9.
Wang X, Wei Y, Xiao H, et al. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol. 2016;46:1343-50.
Wang RX, Yu CR, Mahdi RM, Egwuagu CE. Novel IL27p28/ IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem. 2012;287: 36012-21.
O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell. 2002;109 Suppl: S121-31.
Thierfelder WE, van Deursen JM, Yamamoto K, et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature. 1996;382:171-4.
Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168: 5699-708.
Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res. 2003; 23:513-22.
Wolf SF, Temple PA, Kobayashi M, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol. 1991;146:3074-81.
Collison LW, Vignali DA. Interleukin-35: Odd one out or part of the family? Immunol Rev. 2008;226:248-62.
Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol. 2007;37:3021-9.
Collison LW, Pillai MR, Chaturvedi V, Vignali DA. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J Immunol. 2009;182: 6121-8.
Wang X, Liu X, Zhang Y, et al. Interleukin (IL)-39 [IL-23p19/ Epstein-Barr virus-induced 3 (Ebi3)] induces differentiation/ expansion of neutrophils in lupus-prone mice. Clin Exp Immunol. 2016;186:144-56.
Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165 97.
Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: Break of tolerance in the artery wall. Thromb Haemost. 2011;106:779-86.
Presky DH, Yang H, Minetti LJ, et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A. 1996;93:14002-7.
Jacobson NG, Szabo SJ, Weber-Nordt RM, et al. Interleukin 12 signaling in T helper Type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med. 1995;181:1755-62.
Sekiya T, Yoshimura A. In Vitro Th differentiation protocol. Methods Mol Biol. 2016;1344:183-91.
Wills-Karp M. IL-12/IL-13 axis in allergic asthma. J Allergy Clin Immunol. 2001;107:9-18.
Dickensheets HL, Freeman SL, Donnelly RP. Interleukin-12 differentially regulates expression of IFN-gamma and interleukin-2 in human T lymphoblasts. J Interferon Cytokine Res. 2000; 20:897-905.
Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naïve CD8 T cells: Dissociating proliferation and development of effector function. J Exp Med. 2003;197:1141-51.
Yoo JK, Cho JH, Lee SW, Sung YC. IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol. 2002;169:3637-43.
Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized Type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4 T cell responses in vitro. J Immunother 2007; 30:75-82.
Carrión M, Pérez-García S, Jimeno R, et al. Inflammatory mediators alter interleukin-17 receptor, interleukin-12 and -23 expression in human osteoarthritic and rheumatoid arthritis synovial fibroblasts: Immunomodulation by vasoactive intestinal Peptide. Neuroimmunomodulation. 2013;20:274-84.
Wang EY, Yang Q, Liao ZG. Association of polymorphisms in interleukin (IL)-12A and -B genes with rheumatoid arthritis in a Chinese population. Clin Exp Immunol. 2015;180:83-9
Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297-329.
Uyemura K, Demer LL, Castle SC, et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis. J Clin Invest. 1996;97:2130-8.
Lee TS, Yen HC, Pan CC, Chau LY. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 1999;19:734-42.
Yong K, Dogra G, Boudville N, et al. Interleukin-12 is associated with arterial stiffness in healthy individuals. Am J Hypertens. 2013;26:159-62.
Opstad TB, Arnesen H, Pettersen AA, et al. Combined elevated levels of the proinflammatory cytokines IL-18 and IL-12 are associated with clinical events in patients with coronary artery disease: An observational study. Metab Syndr Relat Disord. 2016;14:242-8.
Jääskeläinen AE, Seppälä S, Kakko T, Jaakkola U, Kallio J. Systemic treatment with neuropeptide Y receptor Y1-antagonist enhances atherosclerosis and stimulates IL-12 expression in ApoE deficient mice. Neuropeptides. 2013;47:67-73.
Wan W, Lionakis MS, Liu Q, Roffê E, Murphy PM. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc Res. 2013;97:580-8.
Mishra M, Kumar H, Bajpai S, Singh RK, Tripathi K. Level of serum IL-12 and its correlation with endothelial dysfunction, insulin resistance, proinflammatory cytokines and lipid profile in newly diagnosed Type 2 diabetes. Diabetes Res Clin Pract. 2011;94:255-61.
Ranjbaran H, Sokol SI, Gallo A, et al. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol. 2007;178:592-604.
Nagai T, Devergne O, van Seventer GA, van Seventer JM. Interferon-beta mediates opposing effects on interferon-gamma- dependent Interleukin-12 p70 secretion by human monocyte- derived dendritic cells. Scand J Immunol. 2007;65:107-17.
Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910-4.
Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenenk R, Joosten I, Koenen HJ. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol. 2011;131:1853-60.
Deknuydt F, Bioley G, Valmori D, Ayyoub M. IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin Immunol. 2009;131: 298-307.
Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORγt+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci U S A. 2010;107:19402-7.
Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol. 2002;168:5448-54.
Floss DM, Schröder J, Franke M, Scheller J. Insights into IL-23 biology: From structure to function. Cytokine Growth Factor Rev. 2015;26:569-78.
Rong C, Hu W, Wu FR, Cao XJ, Chen FH. Interleukin-23 as a potential therapeutic target for rheumatoid arthritis. Mol Cell Biochem. 2012;361:243-8.
Mohammadi M, Hayatbakhsh MM, Zahedi MJ, Jalalpour MR, Pakgohar A. Serum interleukin-23 levels in patients with ulcerative colitis. Iran J Immunol. 2011;8:183-8.
Mudigonda P, Mudigonda T, Feneran AN, Alamdari HS, Sandoval L, Feldman SR. Interleukin-23 and interleukin-17: Importance in pathogenesis and therapy of psoriasis. Dermatol Online J. 2012;18:1.
Xia LP, Li BF, Shen H, Lu J. Interleukin-27 and interleukin-23 in patients with systemic lupus erythematosus: Possible role in lupus nephritis. Scand J Rheumatol. 2015;44:200-5.
Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310-6.
Ngiow SF, Teng MW, Smyth MJ. A balance of interleukin-12 and -23 in cancer. Trends Immunol. 2013;34:548-55.
Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: A key cytokine in inflammatory diseases. Ann Med. 2011;43:503-11.
Savvatis K, Pappritz K, Becher PM, et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail. 2014;7:161-71.
Khojasteh-Fard M, Abolhalaj M, Amiri P, et al. IL-23 gene expression in PBMCs of patients with coronary artery disease. Dis Markers. 2012;33:289-93.
Ma S, Zhong D, Chen H, et al. The immunomodulatory effect of bone marrow stromal cells (BMSCs) on interleukin (IL)-23/ IL-17-mediated ischemic stroke in mice. J Neuroimmunol. 2013;257:28-35.
Erbel C, Dengler TJ, Wangler S, et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol. 2011;106:125-34.
David A, Saitta S, De Caridi G, et al. Interleukin-23 serum levels in patients affected by peripheral arterial disease. Clin Biochem. 2012;45:275-8.
Abbas A, Gregersen I, Holm S, et al. Interleukin 23 levels are increased in carotid atherosclerosis: Possible role for the interleukin 23/interleukin 17 axis. Stroke. 2015;46:793-9
Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 2002;16:779-90.
Liu J, Guan X, Ma X. Regulation of IL-27 p28 gene expression in macrophages through MyD88-and interferon-gamma-mediated pathways. J Exp Med. 2007;204:141-52.
Wynick C, Petes C, Gee K. Interleukin-27 mediates inflammation during chronic disease. J Interferon Cytokine Res. 2014;34: 741-9.
Owaki T, Asakawa M, Morishima N, et al. A role for IL-27 in early regulation of Th1 differentiation. J Immunol. 2005;175: 2191-200.
Villarino A, Hibbert L, Lieberman L, et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity. 2003;19:645-55.
Wojno ED, Hunter CA. New directions in the basic and translational biology of interleukin-27. Trends Immunol. 2012; 33:91-7.
Neufert C, Becker C, Wirtz S, et al. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol. 2007;37:1809-16.
Artis D, Villarino A, Silverman M, et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of Type 2 immunity. J Immunol. 2004;173:5626-34.
Pot C, Apetoh L, Kuchroo VK. Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol. 2011;23:202-8.
Krumbiegel D, Anthogalidis-Voss C, Markus H, Zepp F, Meyer CU. Enhanced expression of IL-27 mRNA in human newborns. Pediatr Allergy Immunol. 2008;19:513-6.
Stumhofer JS, Tait ED, Quinn WJ 3rd, et al. A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nat Immunol. 2010;11:1119-26.
Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 2004;172:2225-31.
Chen Q, Ghilardi N, Wang H, et al. Development of Th1-type immune responses requires the Type I cytokine receptor TCCR. Nature. 2000;407:916-20.
Sprecher CA, Grant FJ, Baumgartner JW, et al. Cloning and characterization of a novel class I cytokine receptor. Biochem Biophys Res Commun. 1998;246:82-90.
Rosas LE, Satoskar AA, Roth KM, et al. Interleukin-27R (WSX- 1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to Leishmania donovani infection but develop severe liver immunopathology. Am J Pathol. 2006;168:158-69.
Lee YS, Amadi-Obi A, Yu CR, Egwuagu CE. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin- 27 and interleukin-10. Immunology. 2011;132:492-502.
Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7:937-45.
Rajaiah R, Puttabyatappa M, Polumuri SK, Moudgil KD. Interleukin-27 and interferon-gamma are involved in regulation of autoimmune arthritis. J Biol Chem. 2011;286: 2817-25.
Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol. 2006;7:929-36.
Miyazaki Y, Inoue H, Matsumura M, et al. Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX- 1-deficient mice. J Immunol. 2005;175:2401-7.
Yoshizaki A, Yanaba K, Iwata Y, et al. Elevated serum interleukin- 27 levels in patients with systemic sclerosis: Association with T cell, B cell and fibroblast activation. Ann Rheum Dis. 2011;70:194-200.
Summers SA, Phoon RK, Ooi JD, Holdsworth SR, Kitching AR. The IL-27 receptor has biphasic effects in crescentic glomerulonephritis mediated through Th1 responses. Am J Pathol. 2011;178:580-90.
Nieuwenhuis EE, Neurath MF, Corazza N, et al. Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice. Proc Natl Acad Sci U S A. 2002;99:16951-6.
Siebler J, Wirtz S, Frenzel C, et al. Cutting edge: A key pathogenic role of IL-27 in T cell-mediated hepatitis. J Immunol. 2008;180:30-3.
Kempe S, Heinz P, Kokai E, Devergne O, Marx N, Wirth T. Epstein-barr virus-induced gene-3 is expressed in human atheroma plaques. Am J Pathol. 2009;175:440-7.
Hirase T, Hara H, Miyazaki Y, et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol. 2013;305:H420-9.
Ma MC, Wang BW, Yeh TP, et al. Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol. 2015;110:22.
Fu H, Tang YY, Ouyang XP, et al. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2014;452:881-7.
Jin W, Zhao Y, Yan W, et al. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediators Inflamm. 2012;2012:506283.
Posadas-Sánchez R, Pérez-Hernández N, Rodríguez-Pérez JM, et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: The genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget. 2017;8:64459-70.
Ning X, Jian Z, Wang W. Low serum levels of interleukin 35 in patients with rheumatoid arthritis. Tohoku J Exp Med. 2015; 237:77-82.
Collison LW, Chaturvedi V, Henderson AL, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010;11:1093-101.
Li X, Mai J, Virtue A, et al. IL-35 is a novel responsive anti-inflammatory cytokine-a new system of categorizing anti-inflammatory cytokines. PLoS One. 2012;7:e33628.
Devergne O, Birkenbach M, Kieff E. Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc Natl Acad Sci U S A. 1997;94:12041-6.
Bettini M, Castellaw AH, Lennon GP, Burton AR, Vignali DA. Prevention of autoimmune diabetes by ectopic pancreatic ß-cell expression of interleukin-35. Diabetes. 2012;61:1519-26.
Liu JQ, Liu Z, Zhang X, et al. Increased Th17 and regulatory T cell responses in EBV-induced gene 3-deficient mice lead to marginally enhanced development of autoimmune encephalomyelitis. J Immunol. 2012;188:3099-106.
Wirtz S, Billmeier U, Mchedlidze T, Blumberg RS, Neurath MF. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology. 2011; 141:1875-86.
Whitehead GS, Wilson RH, Nakano K, Burch LH, Nakano H, Cook DN. IL-35 production by inducible costimulator (ICOS)- positive regulatory T cells reverses established IL-17-dependent allergic airways disease. J Allergy Clin Immunol. 2012;129:207- 15.e1-5.
Tao L, Zhu J, Chen Y, et al. IL-35 improves Treg-mediated immune suppression in atherosclerotic mice. Exp Ther Med. 2016;12:2469-76.
Wang B, Dai S, Dong Z, et al. The modulation of endoplasmic reticulum stress by chemical chaperone upregulates immune negative cytokine IL-35 in apolipoprotein E-deficient mice. PLoS One. 2014;9:e87787.
Lin Y, Huang Y, Lu Z, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One. 2012;7:e52490.
Posadas-Sánchez R, Pérez-Hernández N, Angeles-Martínez J, et al. Interleukin 35 polymorphisms are associated with decreased risk of premature coronary artery disease, metabolic parameters, and IL-35 Levels: The genetics of atherosclerotic disease (GEA) study. Mediators Inflamm. 2017;2017:6012795.
Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80: 273-90.
Windsor L, Morahan G, Huang D, et al. Alleles of the IL12B 3’UTR associate with late onset of Type 1 diabetes. Hum Immunol. 2004;65:1432-6.
Yaghini N, Mahmoodi M, Hassanshahi G, et al. Genetic variation of IL-12B (+1188 region) is associated with its decreased circulating levels and susceptibility to Type 2 diabetes. Biomark Med. 2012;6:89-95.
van Veen T, Crusius JB, Schrijver HM, et al. Interleukin-12p40 genotype plays a role in the susceptibility to multiple sclerosis. Ann Neurol. 2001;50:275.
Wong RH, Wei JC, Huang CH, et al. Association of IL-12B genetic polymorphism with the susceptibility and disease severity of ankylosing spondylitis. J Rheumatol. 2012;39:135-40.
Wei P, Kou W, Zhang C, et al. Genetic variations in interleukin- 12B in allergic rhinitis. Immunol Res. 2016;64:329 36.
Chen T, Liang W, Gao L, et al. Association of single nucleotide polymorphisms in interleukin 12 (IL-12A and -B) with asthma in a Chinese population. Hum Immunol. 2011;72:603-6.
Alvarado-Navarro A, Montoya-Buelna M, Muñoz-Valle JF, López- Roa RI, Guillén-Vargas C, Fafutis-Morris M. The 3’UTR 1188 A/C polymorphism in the interleukin-12p40 gene (IL-12B) is associated with lepromatous leprosy in the west of Mexico. Immunol Lett. 2008;118:148-51.
Momiyama Y, Ohmori R, Nagano M, et al. Polymorphism of the 3’-untranslated region of interleukin-12 p40 gene is not associated with the presence or severity of coronary artery disease. Circ J. 2005;69:793-7.
Mangino M, Braund P, Singh R, et al. Association analysis of IL-12B and IL-23R polymorphisms in myocardial infarction. J Mol Med (Berl). 2008;86:99-103.
Li FF, Zhu XD, Yan P, et al. Characterization of variations in IL23A and IL23R genes: Possible roles in multiple sclerosis and other neuroinflammatory demyelinating diseases. Aging (Albany NY). 2016;8:2734-46.
Jia H, Tao F, Liu C, et al. Both interleukin-23A polymorphism and serum interlukin-23 expression are associated with Graves’ disease risk. Cell Immunol. 2015;294:39-43.
Catanoso MG, Boiardi L, Macchioni P, et al. IL-23A, IL-23R, IL-17A and IL-17R polymorphisms in different psoriatic arthritis clinical manifestations in the northern Italian population. Rheumatol Int. 2013;33:1165-76.
Costa VS, Santos AS, Fukui RT, Mattana TC, Matioli SR, Silva ME. Protective effect of interleukin-23A (IL23A) haplotype variants on type 1A diabetes mellitus in a Brazilian population. Cytokine. 2013;62:327-33.
Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41:199-204.
Chen H, Poon A, Yeung C, et al. A genetic risk score combining ten psoriasis risk loci improves disease prediction. PLoS One. 2011;6:e19454.
Eiris N, Santos-Juanes J, Coto-Segura P, et al. Resequencing of the IL12B gene in psoriasis patients with the rs6887695/ rs3212227 risk genotypes. Cytokine. 2012;60:27-9.
Popa OM, Kriegova E, Popa L, et al. Association study in Romanians confirms IL23A gene haplotype block rs2066808/rs11171806 as conferring risk to psoriatic arthritis. Cytokine. 2013;63:67-73.
Bowes J, Orozco G, Flynn E, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis. 2011;70:1641-4.
Chae SC, Li CS, Kim KM, et al. Identification of polymorphisms in human interleukin-27 and their association with asthma in a Korean population. J Hum Genet. 2007;52:355-61.
Li CS, Zhang Q, Lee KJ, et al. Interleukin-27 polymorphisms are associated with inflammatory bowel diseases in a Korean population. J Gastroenterol Hepatol. 2009;24:1692-6.
Paradowska-Gorycka A, Raszkiewicz B, Jurkowska M, et al. Association of single nucleotide polymorphisms in the IL27 gene with rheumatoid arthritis. Scand J Immunol. 2014;80:298-305.
Shen Y, Yuan XD, Hu D, et al. Association between interleukin- 27 gene polymorphisms and susceptibility to allergic rhinitis. Hum Immunol. 2014;75:991-5.
Huang N, Liu L, Wang XZ, Liu D, Yin SY, Yang XD. Association of interleukin (IL)-12 and IL-27 gene polymorphisms with chronic obstructive pulmonary disease in a Chinese population. DNA Cell Biol. 2008;27:527-31.
Yamamoto-Furusho JK, Posadas-Sánchez R, Alvarez-León E, Vargas-Alarcón G. Protective role of Interleukin 27 (IL-27) gene polymorphisms in patients with ulcerative colitis. Immunol Lett. 2016;172:79-83.
Zhang D, Ma M, Yang Y, et al. Association between polymorphisms in IL27 and risk for CHD in a Chinese population. Cardiol Young. 2016;26:237-43.
Fan Q, Nie S, Li S, et al. Analysis of the genetic association between IL27 variants and coronary artery disease in a Chinese Han population. Sci Rep. 2016;6:25782.
Wang EY, Liang WB, Zhang L. Association between single-nucleotide polymorphisms in interleukin-12A and risk of chronic obstructive pulmonary disease. DNA Cell Biol. 2012;31:1475-9.
Guo T, Yang S, Liu N, Wang S, Cui B, Ning G. Association study of interleukin-12A gene polymorphisms with Graves’ disease in two Chinese populations. Clin Endocrinol (Oxf). 2011; 74:125-9.
Shen L, Zhang H, Zhou X, Liu R. Association between polymorphisms of interleukin 12 and rheumatoid arthritis associated biomarkers in a Chinese population. Cytokine. 2015;76:363-7.
Namkung JH, Lee JE, Kim E, et al. Association of single nucleotide polymorphisms in the IL-12 (IL-12A and B) and IL-12 receptor (IL-12Rbeta1 and beta2) genes and gene-gene interactions with atopic dermatitis in Koreans. J Dermatol Sci 2010; 57:199-206.
Zhang Y, Duan S, Wei X, Zhao Y, Zhao L, Zhang L. Association between polymorphisms in FOXP3 and EBI3 genes and the risk for development of allergic rhinitis in Chinese subjects. Hum Immunol. 2012;73:939-45.
Zhang Y, Wang C, Zhao Y, Zhang L. Some polymorphisms in Epstein-Barr virus-induced gene 3 modify the risk for chronic rhinosinusitis. Am J Rhinol Allergy. 2013;27:91-7.
Zheng R, Liu H, Song P, et al. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis. Tuberculosis (Edinb). 2015;95:497-504.
Ringkowski S, Thomas PS, Herbert C. Interleukin-12 family cytokines and sarcoidosis. Frontiers in Pharmacology. 2014;5:233.