2005, Number 4
<< Back Next >>
Bioquimia 2005; 30 (4)
Effect in vitro of synthetic 1-O-alkylglycerols on the transformation and hemolytic activity on the sickle erythrocytes
Torres-Domínguez A, del Toro-García G, Valdés-Rodríguez YC, León JL, Merchán F
Language: Spanish
References: 42
Page: 101-109
PDF size: 176.05 Kb.
ABSTRACT
Sickle cell disease is a hereditary illness that is expressed by the substitution of the rest of glutamic acid for valin in the six position in those
β chain of the hemoglobin, originating the sickle hemoglobin (HbS). The 1-O-alkylglycerols are biosynthetic precursory of 1-O-alkylglycerophospholipids of the cellular membranes. In previous studies of the effects of those natural and synthetic 1-O-alkylglycerols it was found that they inhibit the 2-phospholipase activity, Ca
2+-ATPasa and Na
+ K
+-ATPasa of the human erythrocyte membrane, related with the surfactant properties of these compounds those which are responsible for the effects on the echinogenic transformation of the erythrocyte membrane. In this work is presented a study by of Optic Microscopy and Nuclear Magnetic Resonance with the objective of analyzing the action of those synthetic 1-O-alkylglycerols C10 and C12 on the erythrocyte of patient with sickle cell disease. Beside is presented a spectrophotometric study of the hemolytic activity of the C12 and C10 on sickle and normal erythrocytes. The microphotographs evidenced that these made up to the molars relationships 1:1 and 1:5, the same as other members of this family of compounds, inhibited the transformation of the sickle erythrocyte, favoring the echinogenic transformation, although the mechanism implied in this effect is not related with the inhibition of the HbS polymerization. There was no significant difference in hemolysis percentage between erythrocytes with Hb AA and HBSS. In the present work we demonstrated that 1-O-alkylglycerols inhibited the transformation of sickle erythrocytes, probably by the interaction of 1-O-alkylglycerols with erythrocyte membrane.
REFERENCES
Dean J, Schechter AN. Sickle cell anemia: molecular and cellular bases of therapeutic approaches. New Engl J Med 1978; 299: 752-763, 804-811, 863-870.
Serjeant GR. Sickle cell disease. 2nd ed. Great Britain: Oxford Medical Publications; 1992: 56, 61, 71-77, 120-366.
Serjeant GR. Sickle-cell disease. Lancet 1997; 350: 725-730.
Bunn HF. Pathogenesis and treatment of sickle cell disease. New Engl J Med 1997; 337: 762-769.
Steinberg MH. Management of sickle cell disease. New Engl J Med 1999; 340: 1021-1030.
Davies SC, Oni L. Management of patients with sickle cell disease. BMJ 1997; 315: 656-660.
Brugnara C. Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration. J Pediatr Haematol Oncol 2003; 25: 927-933.
Marlowe KF, Chicella MF. Treatment of sickle cell pain. Pharmacotherapy 2002; 22: 484-491.
Matsui NM, Borsig L, Rosen SD, Yaghmai M, Varki A, Embury SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood 2001; 98: 1955-1982.
Provan D, Weatherall D. Red cells II: acquired anaemias and polycythaemia. Lancet 2000; 355: 1260-1268.
Lubin BH. Sickle cell disease and the endothelium. New Engl J Med 1997; 337:1623-1625.
Lew VL, Etzion Z, Bookchin RM. Dehydration response of sickle cells to sickling-induced Ca++ permeabilization. Blood 2002; 99: 2578-2585.
NIH Publication. Public Health Service. National Institutes of Health National Heart, Lung, and Blood Institute. 1998; 98: 4086.
Espinosa-Martínez E, Svarch E, Martínez-Antuña G, Hernández-Ramírez P. La anemia drepanocítica en Cuba. Experiencia de 30 años Instituto de Hematología e Inmunología Ciudad de La Habana, Cuba. Rev Cubana Hematol Inmunol Hemoter 1997; 12: 97-105.
Mangold HK, Weber N. Biosynthesis and biotransformation of ether lipids. Lipids 1987; 22: 789-799.
Braquet P. Biologically active ether lipids. Prog Biochem Pharmacol 1988; 22: 48-57.
Tsujimoto M, Toyama AS. Studies on unsaponificable fractions from some fish liver oil. Ann Rep Tokyo Inst Technol 1921; 16: 471-510.
Spener FY, Mangold HK. The alkyl-moieties in wax esters and alkyl-diacylglycerols of sharks. J Lipid Res 1971; 12: 12-16.
Sedeño C, Prun B, Ángeles M, Enríquez RD. Estudios químicos de las Gorgonias cubanas. XIV. Gliceril éteres presentes en 5 especies de Gorgonias. Rev Cub Farm 1985; 84: 237-243.
Snyder F, Wood R. Alkyl and alk-1-enyl-ethers of glycerol in lipids from normal and neoplastic human tissue. Cancer Res 1969; 29: 251-257.
Hallgren B, Larson S. The glycerol ether in the liver oil of elasmobranch fish. Lipids Res 1962; 3: 31-38.
Bordier CG, Sellier N, Foucault AP, Le Goffic F. Purification and characterization of deep sea shark Centrophorus squamosus liver oil 1-O-alkylglycerol ether lipids. Lipids 1996; 31: 521-528.
Sotomayor H. Efectos antitumorales in vivo de los 1-O-alquilgliceroles del aceite de hígado del tiburón Galeocerdo cuvieris y del 1-O-hexadecilglicerol sintético. Tesis para optar por el título de Maestro en Ciencias. Universidad de La Habana. 1998.
Valdés Y. Propiedades biológicas de los 1-O-alquilgliceroles de origen marino. Tesis Doctoral. Universidad de La Habana. 1997.
Munder P, Weltzein H, Modollel M. Lysolecitin analogues: new class of immunopotentiators in immunopathology. Proc VII Int Symp, PA Miecher; 1976: 411-424.
Lin HJ, Ho FC, Lee CL. Abnormal distribution of O-alkyl groups in the neutral glycerolipids from human hepatocellular carcinomas. Cancer Res 1978; 38: 946-949.
Ando K, Kodama K, Kato A, Tamura G, Arima K. Antitumor activity of glyceryl ethers. Cancer Res 1972; 32: 125-129.
Weber N, Mangold HK. Radioactivity label ether lipids by biotransformation of symmetrical alkylglycerols in cell suspension cultures of rape. FEBS Lett 1987; 211: 225-228.
Weber N. Biological effects of alkylglycerols. Prog Biochem Pharmacol 1988; 22: 48-57.
Pugliese PT, Jordan K, Cederberg H, Brohulth J. Some biological action of alkylglycerols from shark liver oil. J Altern Complement Med 1998; 4: 87-99.
Bilbao M, León JL, Sotomayor H, Valdés Y, Merchán F. Síntesis química y caracterización del 1-O-octadecilglicerol. Sus efectos antiinflamatorios. Memorias Joven Ciencia 1998: 115.
Hernández M. Caracterización del efecto de los 1-O-alquilgliceroles sobre la línea celular N2a. Tesis Maestría. Universidad de La Habana. 2001.
Fernández AA, Falcón JE, Del Toro G, Pozo AR. Caracterización de los buffer fosfatos utilizados en la preparación de solución de hemoglobina (Hb) a pH controlado. Rev Cub Quím 2001; 13: 87-96.
Del Toro G, Falcón JE, Alonso Y. Estudio de la actividad hemolítica del 4-hidroxi-3-metoxibenzaldehído en hematíes SS. Rev Cub Farm 2002; 36 Supl 1: 54-58.
Stanley HR. Toxicity testing of dental materials. 1a. ed. Florida: CRC Press Inc; 1985: 17-22.
Del Toro-García G, Falcón-Dieguez JE, Alonso-Geli Y, Valdés-Rodríguez YC, Cabal-Mirabal CA. Vainillina: agente inhibidor de la polimerización de la hemoglobina S. Bioquimia 2003; 28: 4-10.
Junqueira LC, Carneiro J. Histología Básica. 4ª. ed. España: Masson; 1996.
Ballas S, Smith ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood 1992; 79: 2154-2163.
Bessis M. La forme et la déformabilité des érythrocytes normaux et dons certaines anémies hémolytiques congénitales. Nouv Rev Fr Hematol 1977; 18: 75-94.
Lebland P. The discocyte-echinocyte transformation or the human red cell: deformability characteristics. Nouv Rev Fr Hematol 1972; 12: 815-816.
Clark MR, Mohandas N, Feo C, Jacobs MS, Shohet SB. Separate mechanism of deformability loss in ATP-depleted and Ca-loaded erythrocytes. J Clin Invest 1981; 67: 531-539.
Del Toro G, Valdés YC, Graell MC, Falcón V, Cabal CA. Actividad antidrepanocítica de la vainillina sobre hematíes de un paciente con drepanocitemia por microscopía electrónica de transmisión. Bioquimia 2004; 29: 5-10.