2017, Number 1
<< Back Next >>
Ann Hepatol 2017; 16 (1)
Bile Acids in Nonalcoholic Fatty Liver Disease: New Concepts and Therapeutic Advances
Cruz-Ramón V, Chinchilla-López P, Ramírez-Pérez O, Méndez-Sánchez N
Language: English
References: 78
Page: 58-67
PDF size: 6854.57 Kb.
ABSTRACT
Nonalcoholic liver disease (NAFLD) is a major emerging health burden that is a common cause of illness and death worldwide.
NAFLD can progress into nonalcoholic steatohepatitis (NASH) which is a severe form of liver disease characterized by inflammation
and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The
mechanism of the progression from simple steatosis to NASH is unclear. However, there are theories and hypothesis which support
the link between disruption of the bile acids homeostasis and the progression of this disorder. Previous studies have been
demonstrated that alterations of these pathways can lead to dysregulation of energy balance and an increase of liver inflammation
and fibrosis. In this review, we summarized the current knowledge of the interaction between BA and the process related to the development
of NAFLD, besides, the potential targets for novel therapies.
REFERENCES
Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis 2016; 20: 205-14.
Degasperi E, Colombo M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol 2016; 2: 156-64.
Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot- Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 2013; 3: 593- 608.
Wong VW. Nonalcoholic fatty liver disease in Asia: a story of growth. J Gastroenterol Hepatol 2013; 1: 18-23.
Lopez-Velazquez J, Silva-Vidal K, Ponciano-Rodrigues G, Chavez-Tapia NC, Arrese M, Uribe M, Mendez-Sanchez N. The prevalence of nonalcoholic liver disease in Americas. Ann Hepatol 2014; 2: 166-8.
Almeda-Valdes P, Altamirano-Barrera A, Mendez-Sanchez N. Insights in nonalcoholic liver disease pathophysiology with lipidomic analyses. Ann Hepatol 2015; 4: 567-9.
Brunt EM, Wong V, Nobili V, Day C, Sookoian S, Maher JJ, Bugianesi E, et al. Nonalcoholic fatty liver disease. Nature Reviews 2015; 1: 1-22.
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 6052: 105-8.
Arab JP, Karpen S, Dawson P, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017; 1: 350-62.
Koliaki C, Szendroedi J, Schlensak M, Roden M. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 2015; 5: 739-46.
Di Ciaula A, Garruti G, Lunardi R, Molina E, Bonfrate L, Wang D, Portincasa P. Bile acid physiology. Ann Hepatol 2017; [In press].
Ferslew B, Xie G, Johnston CK, Su M, Stewart PW, Jia W, Brower KL, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 2015; 60: 3318-28.
Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem Pharmacol 2013; 11: 1517-24.
Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2017; 4: 375-81.
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 3: 259-78.
Berger J, Moller DE. The mechanisms of action of PPARs. Ann Rev Med 2002; 53: 409-35.
Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A. Identification of a nuclear receptor for bile acids. Science 1999; 5418: 1362-5.
Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 5418: 1365-8.
Aranha MM, Cortez-Pinto H, Costa A, da Silva IB, Camilo ME, de Moura MC, Rodrigues CM. Bile acids levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 2008; 6: 519-25.
Wagner M, Zollner G, Trauner M. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 2011; 4: 1120-34.
Lopez-Velazquez JA, Carrillo-Cordova LD, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Nuclear receptors in nonalcoholic fatty liver disease. J Lipids 2012; 2012: 139875.
Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 1: 55-67.
Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 2013; 4: 1394-406.
Zhang Y, Hagedorn CH, Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta 2011; 8: 893-908.
Gonzalez FJ, Jiang C, Xie C, Patterson AD. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig Dis 2017; 3: 178-84.
Dawson PA. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol 2011; 201: 169-203.
Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis 2015; 3: 327-31.
Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, et al. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 11: 1253-5.
Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 2008; 11: 1122-9.
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 1996; 1: 728-31.
Ai ZL, Chen DF. [The significance and effects of liver X receptor alpha in nonalcoholic fatty liver disease in rats.] Zhonghua Gan Zang Bing Za Zhi 2007; 2: 127-30 [article in Chinese].
Huang YY, Gusdon AM, Qu S. Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 2013; 12: 171.
Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004; 2: 157-69.
Dasarthy S, Yang Y, McCullough AJ, Marczewski S, Bennet C, Kalhan SC. Elevated hepatic fatty acid oxidation high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 2011; 5: 382-8.
Ali A, Carey E, Lindor K. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 2015; 1: 5.
Aguilar-Olivos N, Carrillo-Córdova D, Oria-Hernández J, Sánchez V, Ponciano-Rodríguez G, Ramírez- Jaramillo M, Chablé-Montero F, et al. The nuclear receptor FXR, but not LXR, up regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol 2015; 4: 487-93.
Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlén M, Nilsson P, et al. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 2009; 10: 365.
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, et al. Mass-spectrometry-based draft of the human proteome. Nature 2014; 7502: 582-7.
Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, et al. Analysis of the human tissuespecific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 2: 397-406.
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012; 4: 227-32.
Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J Biol Chem 2016; 13: 6626-40.
Charles T, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabol 2009; 3: 167-77.
Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic cells. Biochem Biophys Res Commun 2012; 3: 600- 5.
Rtveladze K, Marsh T, Barquera S, Sánchez Romero M, Levy D, Melendez G, Webber L, et al. Obesity prevalence in Mexico: Impact on health and economic burden. Public Health Nutr 2014; 1: 233-9.
Almeda-Valdés P, Aguilar-Olivos N, Uribe M, Mendez- Sanchez N. Common features of the metabolic syndrome and nonalcoholic fatty liver disease. Rev Recent Clin Trials 2014; 3: 148-58.
Leite NC, Salles GF, Araujo ALE, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 2009; 1: 113-19.
Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 1: 55-67.
Prinz P, Hofmann T, Ahnis A, Elbelt U, Goebel-Stengel M, Klapp B, Rose M, et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front Neurosci 2015; 9: 199.
Noel OF, Still CD, Argyropoulos G, Edwards M, Gerhard GS. Bile acids, FXR, and metabolic effects of bariatric surgery. J Obesity 2016; 2016: 4390254.
Monte M, Marin JG, Antelo A, Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J Gastroenterol 2009; 7: 804-16.
Haeusler RA, Camastra S, Nannipieri M, Astiarraga B, Castro J, Xie D, Liangsu W, et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J Clin Endocrinol Metab 2016; 5: 1935-44.
Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 3: 274-85.
Ley RE, Bäckhed F, Turnbaugh P, Lozupone C, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 31: 11070-5.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 7122: 1022-3.
Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 2010; 5975: 228-31.
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Gordon JL. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl AcadSci USA 2004;44: 15718-23.
Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. The interpersonal and intrapersonal diversity of human- associated microbiota in key body sites. J Allergy Clin Immunol 2012; 5: 1204-8.
Lagier JC, Million M, Hugon P, Armougom F, Raoult D. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2012; 2: 136.
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 5778: 1355-9.
Lau E, Carvalho D, Freitas P. Gut microbiota: association with NAFLD and metabolic disturbances. Bio Med Res Int 2015; 2015: 979515.
Khalid Q, Bailey I, Patel V. Non?alcoholic fatty liver disease: the effect of bile acids and farnesoid X receptor agonists on pathophysiology and treatment. Liver Res Open J 2015; 2: 32-40.
Wigg A, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 2: 206-11.
Perino A, Schoonjans K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol Sci 2015; 12: 847-57.
US National Institutes of Health. Clinicaltrials.gov. NASH. [https:// clinicaltrials.gov/ct2/results?cond=NASH&term= &cntry1=&state1=&recrs=]
Safadi R, Konikoff FM, Mahamid M, Zelber-Sagi S, Halpern M, Gilat T, Oren R, et al. The fatty acid-bile acid conjugate aramchol reduces liver fat content in patients with non-alcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12: 2085-91.
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 3: 720-33.
Wong R, Aguilar M, Cheung R, Perumpail R, Harrison S, Younossi Z, Ahmed A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 3: 547-55.
Ratziu V, Harrison S, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -γ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016; 5: 1147-9.
Rotonya M, Reid A. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015; 4: 500.
Ali A, Carey E, Lindor K. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 2015; 1: 5.
Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marshall HU, Kipness M, Adorini A, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 3: 574-82.
McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Prunzanski M, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J BiolChem 2013: 17: 11761-70.
Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 2010; 4: 617-30.
Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO-3 output. Hepatology 2011; 4: 1303-12.
Turley SD, Daggy BM, Dietschy JM. Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary-induced hypercholesterolemia. J Cardiovasc Pharmacol 1996; 1: 71-9.
Tagawa H, Irie J, Itoh A, Kusumoto Y, Kato M, Kobayashi N, Tanaka K, et al. Bile acid binding resin improves hepatic insulin sensitivity by reducing cholesterol but not triglyceride levels in the liver. Diabetes Res Clin Pract 2015; 1: 85-94.
Le TA, Chen J, Changchien C, Peterson MR, Kono Y, Patton H, Cohen BL, et al. Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 2012; 3: 922-32.
Smith BW, Adams LA. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol 2011; 8: 456-65.