2017, Number 1
<< Back Next >>
Ann Hepatol 2017; 16 (1)
Bile Acids in Cholestasis and its Treatment
Arab JP, Cabrera D, Arrese M
Language: English
References: 33
Page: 53-57
PDF size: 132.81 Kb.
ABSTRACT
Bile acids (BA) are key molecules in generating bile flow, which is an essential function of the liver. In the last decades there have
been great advances in the understanding of the role of a number of specific transport proteins present at the sinusoidal and canalicular
membrane domains of hepatocytes and cholangiocytes in generating and maintaining bile flow. Also, a clearer understanding on
how BA regulate their own synthesis and the expression and/or function of transporters has been reached. This new knowledge has
helped to better delineate the pathophysiology of cholestasis and the adaptive responses of hepatocytes to cholestatic liver injury
as well as of the mechanisms of injury of biliary epithelia. In this context, therapeutic approaches including the use of new hydrophilic
BA such as the conjugation-resistant nor- ursodeoxycholic acid, nuclear receptor (FXR, PPAR-alpha) agonists, FGF19 analogues,
inhibitors of the apical sodium-depend bile acid transporter (ASBT) and modulators of the inflammatory cascade triggered by BA are
being studied as novel treatments of cholestasis. In the present review we summarize recent experimental and clinical data on the
role of BA in cholestasis and its treatment.
REFERENCES
Arrese M, Accatino L. From blood to bile: recent advances in hepatobiliary transport. Ann Hepatol 2002: 1: 64-71.
Boyer JL. Bile formation and secretion. Compr Physiol 2013: 3: 1035-78. doi: 10.1002/cphy.c120027.
Arrese M, Trauner M. Molecular aspects of bile formation and cholestasis. Trends Mol Med 2003: 9: 558-64.
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003:83:633-71. doi: 10.1152/physrev.00027.2002.
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015: 56: 1085-99. doi: 10.1194/ jlr.R054114.
Marin JJ, Macias RI, Briz O, Banales JM, Monte MJ. Bile Acids in Physiology, Pathology and Pharmacology. Curr Drug Metab 2015: 17: 4-29.
Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 2013: 58: 155-68. doi: 10.1016/j.jhep.2012.08.002.
Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017: 65: 1393-404. doi: 10.1002/hep.28991.
Hegade VS, Speight RA, Etherington RE, Jones DE. Novel bile acid therapeutics for the treatment of chronic liver diseases. Therap Adv Gastroenterol 2016: 9: 376-91. doi: 10.1177/1756283X16630712.
Jansen PL, Ghallab A, Vartak N, et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017: 65: 722-38. doi: 10.1002/hep.28965.
Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver. Mol Aspects Med 2017: 56: 45-53. doi: 10.1016/j.mam.2017.06.001.
Woolbright BL, Jaeschke H. Therapeutic targets for cholestatic liver injury. Expert Opin Ther Targets 2016: 20: 463-75. doi: 10.1517/14728222.2016.1103735.
Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis 2010: 30: 160-77. doi: 10.1055/ s-0030-1253225.
Arrese M, Karpen SJ. Nuclear receptors, inflammation, and liver disease: insights for cholestatic and fatty liver diseases. Clin Pharmacol Ther 2010: 87: 473-8. doi: 10.1038/ clpt.2010.2.
Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013: 368: 17-29. doi: 10.1016/j.mce.2012.05.004.
Jansen PL, Schaap FG, Beuers UH. Fibroblast growth factor 19, an anticholestatic drug produced by human liver. Gastroenterology 2012: 142: e29-30. doi: 10.1053/ j.gastro.2012.01.027.
Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2017: 2: e90780. doi: 10.1172/jci.insight.90780.
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta 2017. doi: 10.1016/ j.bbadis.2017.06.024.
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238: 549-65. doi: 10.1177/ 1535370213489926.
Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta 2017. doi: 10.1016/j.bbadis.2017.06.017.
Xia X, Francis H, Glaser S, Alpini G, LeSage G. Bile acid interactions with cholangiocytes. World J Gastroenterol 2006; 12: 3553-63.
Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol 2015: 62: S25-37. doi: 10.1016/ j.jhep.2015.02.023.
Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012: 55: 173-83. doi: 10.1002/hep.24691.
Wagner M, Trauner M. Recent advances in understanding and managing cholestasis. F1000Res 2016: 5. doi: 10.12688/ f1000research.8012.1.
Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, Drenth JP, et al. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N Engl J Med 2016: 375: 631-43. doi: 10.1056/NEJMoa1509840.
Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 2015: 3: 5. doi: 10.3978/j.issn.2305-5839.2014.12.06.
Xiao L, Pan G. An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol 2017: 41: 509-15. doi: 10.1016/j.clinre.2017.02.001.
Hegade VS, Kendrick SF, Dobbins RL, Miller SR, Richards D, Storey J, Dukes G, et al. BAT117213: Ileal bile acid transporter (IBAT) inhibition as a treatment for pruritus in primary biliary cirrhosis: study protocol for a randomised controlled trial. BMC Gastroenterol 2016: 16: 71. doi: 10.1186/s12876- 016-0481-9.
Graffner H, Gillberg PG, Rikner L, Marschall HU. The ileal bile acid transporter inhibitor A4250 decreases serum bile acids by interrupting the enterohepatic circulation. Aliment Pharmacol Ther 2016:43:303-10. doi: 10.1111/apt.13457.
European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017: 67: 145-172. doi: 10.1016/j.jhep.2017.03.022.
Halilbasic E, Steinacher D, Trauner M. Nor-Ursodeoxycholic Acid as a Novel Therapeutic Approach for Cholestatic and Metabolic Liver Diseases. Dig Dis 2017; 35: 288-92. doi: 10.1159/000454904.
Fickert P, Hirschfield GM, Denk G, Marschall HU, Altorjay I, Färkkilä M, Schramm C, et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol 2017; 67: 549-58. doi: 10.1016/j.jhep.2017.05.009.
Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G, et al. Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis. Cell Metab 2017; 25: 856-67 e5. doi: 10.1016/j.cmet.2017.03.007