2017, Number 3
Next >>
Arch Neurocien 2017; 22 (3)
Detection of epileptic abrupt changes in EEG
Villazana LSA, Eblen ZAA, Montilla LGR, Seijas FCO
Language: Spanish
References: 50
Page: 6-18
PDF size: 630.08 Kb.
ABSTRACT
Epilepsy is a chronic brain disorder that affects approximately 60 million people
worldwide. Approximately 30% of people with epilepsy do not respond to treatment
with one or more medications or to resective surgery. It is well known that the
occurrence of epileptic seizures produces a series of sudden dynamic changes in EEG
signals manifested as partial or generalized seizures in the epileptic patient. In the
present study, a dissimilarity index (DI) was developed for the detection of epileptic
seizures in EEG signals based on an abrupt change detection model, supported
by one-class classifier obtained from support vector data description learning
machine. DI was estimated using Poincaré plot features including the complex
correlation measure from the EEG signals which were used such as the inputs
to the one-class classifiers. DI showed that at the seizure onset its value increases
during following epochs. It was clearly evident that the DI revealed a change in the
statistical distribution of the sets before and after the time instant of the seizure
onset. It was shown that the SVDD based dissimilarity index for epileptic seizure
detection is a good parameter to characterize the epileptic seizure of the patient.
REFERENCES
1.Neligan A, Sander JW. Epidemiology of seizures and epilepsy. In MillerJW, Goodkin HP (eds.) Epilepsy: John Wiley and Sons 2014; 28-32. 2.Browne TR, Holmes GL. Handbook of epilepsy. 4th (eds.) Lippincott Williams & Wilkins; 2008.
2.Browne TR, Holmes GL. Handbook of epilepsy. 4th (eds.) Lippincott Williams & Wilkins; 2008.
Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 2015;313(3):285-93.
4.Teixeira CA , DireitoB, Feldwisch-Drentrup H, Valderrama M, Costa RP, Alvarado-Rojas C, Nikolopoulos S, Le Van Quyen M, Timmer, et al. EPILAB: a software package for studies on the prediction of epileptic seizures. J Neurosci Methods 2011;200(2):257-71.
5.Basseville M, Nikiforov IV. Detection of abrupt changes: theory and application (ed.): Prentice all Englewood Cliffs 1993.
6.Ishii N, Iwata A, Suzumura N. Detection of abrupt change and trend in the time series. Int J Syst Sci 1980;11(5):557-66.
7.Beck JW, Récy J, Taylor F, Edwards RL, Cabioch G. Abrupt changes in early holocene tropical sea surface temperature derived from coral records. Nature 1997;385(6618): 705-7.
8.Kudo S, Magariyama Y, Aizawa S. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 1990;346(6285):677-80.
9.Willsky A. Detection of abrupt changes in dynamic systems. In: Basseville, M, Benveniste A (eds.) Detection of abrupt changes in signals and dynamical systems; Springer-Verlag Berlin Heidelberg 1986;27-49.
10.Solem K, Nilsson A, Sornmo L. An electrocardiogram-based method for early detection of abrupt changes in blood pressure during hemodialysis. ASAIO J 2006; 52(3):282-90.
11.Basseville M, Benveniste A. Sequential detection of abrupt changes in spectral characteristics of digital signals. IEEE Trans Inf Theory 1983;29(5):709-24.
12.Cellucci C, Albano A, Rapp P, Krystal A. Quantitative determination of abrupt changes in dynamical systems: Illustration via identification of seizure termination in generalized tonic–clonic seizure EEG data. Int J Bifurcat Chaos 2003;13(09):2641-55.
13.Adams RP, MacKay DJ. Bayesian online changepoint detection. University of Cambridge, Cambridge, UK. arXiv preprint arXiv:0710.3742. Harvard Intelligent Probabilistic Systems. 2007. Available from: http://hips.seas. harvard.edu/content/bayesian-online-changepoint-detection. [Accessed 17th May 2017].
14.Perreault L, Bernier J, Bobée B, Parent E. Bayesian change-point analysis in hydrometeorological time series. Part 1. J hydrol 2000;235(3):221-41.
15.Ogden RT, Lynch JD. Bayesian analysis of change-point models. In: Müller P, Vidakovic B (eds.) Bayesian inference in Wavelet-based models: Springer New York 1999; 67-82.
16.Desobry F, Davy M, Doncarli C. An online kernel change detection algorithm. IEEE Trans Signal Process 2005;53(8):2961-74.
17.Schölkopf, Bernhard; Williamson, Robert C, et al. Support vector method for novelty detection. In: Popescu F, Guyon I. International conference on neural information processing systems 1999;(12):582-8.
18.Lung-Yut-Fong A. Evaluation of kernel methods for change detection and segmentation: application to audio onset detection. Master Thesis. Uppsala: Uppsala University, disciplinary domain of science and technology, mathematics and computer science, Department of Information Technology 2008. Available from: http://urn. kb.se/resolve?urn=urn:nbn:se:uu:diva-98274. [Accessed 17th May 2017].
19.Tax DM, Duin RP. Support vector data description. Machine Learning 2004;54(1): 45-66.
20.Chang C, Tsai H, Lee Y. A minimum enclosing balls labeling method for support vector clustering.Technical report. National Taiwan University of Science and Technology 2007. URL http://dmlab8.csie.ntust.edu.tw/ downloads/papers/SVC_MEB.pdf. [Accessed 17th May 2017].
21.Chang W, Lee C, Lin C. A revisit to support vector data description. Dept.Comput.Sci, Nat Taiwan Univ, Taipei, Taiwan, Tech Rep 2013.
22.Viglione S, Ordon V, Risch F. A methodology for detecting ongoing changes in the EEG prior to clinical seizures. In 21st Western Institute on Epilepsy 1970;27-8. 23.Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain 2007;130(2):314-33.
Keshri AK, Singh A, Das BN, Sinha RK. LDASpike for recognizing epileptic spikes in EEG. International Journal of Information Engineering and Electronic Business 2013;5(4):41-50.
25.Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 1970;29(3):306-10.
26.Rampil I, Sasse F, Smith NT, Hoff B, Flemming D. Spectral edge frequency a new correlate of anesthetic depth. Anesthesiology 1980;53(3 Suppl):S12.
27.Osorio I, Zaveri HP, Frei MG, Arthurs S, et al. How to detect and quantify epileptic seizures. The Intersection of neurosciences, biology, mathematics, engineering, and physics. CRC Press 2011;139–164.eBook ISBN: 978-1-4398- 3886-0. DOI: 10.1201/b10866-13.
28.Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys Rev Lett 1997;78(22): 4193-6.
29.Quiroga RQ, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 2002;65(4): 041903-1--041903-14.
30.Kreuz T. Measures of neuronal signal synchrony. Scholarpedia 2011;6(12):11922. Available from: http:http://www. scholarpedia.org/article/Synchronization_measures.int [Accessed 28th April 2017].
31.Al-Nashash H, Sabesan S, Krishnan B, George JS, Tsakalis K, Iasemidis L, et al. Single-channel EEG analysis. In: Quantitative EEG analysis methods and clinical applications. ARTECH HOUSE 2009; 51-108.
32.Grassberger P, Procaccia I. Characterization of strange attractors. Phys Rev Lett. 1983;50(5):346-9.
33.Lerner DE. Monitoring changing dynamics with correlation integrals: case study of an epileptic seizure. Physica D 1996;97(4):563-76.
34.Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, et al. Epileptic seizures can be anticipated by non-linear analysis. Mat Med 1998;4(10):1173-6.
35.Grassberger P, Procaccia I. Estimation of the kolmogorov entropy from a chaotic signal. Phys Rev Lett 1983;28(4):2591-3.
36.Hu J, Gao J, Principe JC. Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size. IEEE Trans Biomed Eng 2006;53(12):2606-9.
37.Arnhold J, Grassberger P, Lehnertz K, Elger C. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 1999;134(4): 419-30.
38.Quyen MLV, Martinerie J, Adam C, Varela FJ. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Physica D 1999;127(3):250-66.
39.Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HD. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E. 1995;51(2):980-94.
40.Breakspear M, Terry J. Topographic organization of nonlinear interdependence in multichannel human EEG. Neuroimage 2002;16(3): 822-35.
41.Iasemidis LD, Pardalos P, Sackellares JC, Shiau D. Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J Comb Optim 2001;5(1): 9-26.
42.Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett 1996;76(11): 1804-7.
43.Skiadas CH, Skiadas C. Chaotic modelling and simulation: analysis of chaotic models, attractors and forms. CRC Press 2008;83.
44.Grimaldi G, Manto M. Mechanisms and emerging therapies in tremor disorders. Springer science and business media 2012;(5):95.
45.Behbahani S, Dabanloo NJ, Nasrabadi AM, Teixeira CA, Dourado A. Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyol Derg 2013;13(8):797-803.
46.Karmakar CK, Khandoker AH, Gubbi J, Palaniswami M. Complex Correlation Measure: a novel descriptor for Poincaré plot. Biomed Eng Online 2009;8(1):17;1-12. Available from: http://biomedical-engineering-online. biomedcentral.com/articles/10.1186/1475-925X-8-17. [Accessed 17th May 2017].
47.Vapnik VN. Statistical learning theory. Wiley New York 1998.
48.Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, Massachusetts Institute of Technology 2009.
49.Kemp B, Värri A, Rosa AC, Nielsen KD, Gade J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol 1992;82(5):391-3.
50.Mormann F, Kreuz T, Rieke C, Andrzejak RG, Kraskov A, David P, et al. On the predictability of epileptic seizures. Clin Neurophysiol 2005;116(3):569-87.
51.Gardner AB, Krieger AM, Vachtsevanos G, Litt B. One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 2006;(7):1025-44.