2017, Number 2
<< Back Next >>
Rev Cuba Endoc 2017; 28 (2)
Cutoff value of the waist-to-height ratio as independent predictor of dysglycemia
Hernández RJ, Duchi JPN, Domínguez AE, Díaz DO, Martínez MI, Bosch PY, del Busto A, Rodríguez FL, García EDM
Language: Spanish
References: 38
Page: 1-15
PDF size: 172.15 Kb.
ABSTRACT
Introduction: the waist-to-height ratio is a useful clinical indicator to identify
impaired metabolism of carbohydrates.
Objective: to determine the cutoff value of the waist-to-height ratio as an
independent predictor of dysglycemias, its usefulness and association with other
risk variables.
Methods: descriptive and cross-sectional study conducted in 523 women and in
452 men. They were questioned, physically examined and performed
supplementary studies. The statistical processing determined the frequency
distributions in qualitative and quantitative variables. Pearson´s correlation
coefficient, analysis of Receiver Operator Characteristic curves as well as logistic
regression analysis were all applied, in addition to chi-square test for evaluation of
the statistical significance.
Results: in both sexes, the study found a directly proportional correlation between
the waist-to-height ratio and the variables called fasting glycemia and glycemia at 2
hours, fasting insulinemia, cholesterol, triglycerides, uric acid values and insulinresistance
index, with statistical significance. The waist-to-height index exhibited
the highest predictive power for dysglycemia when compared to other variables
such as cholesterol and insulin-resistance index in both sexes, with a cutoff value of
0.50 in women and 0.49 in men.
Conclusions: the optimal cutoff value of the waist-to-height ratio, as an
independent predictor of dysglycemias, was 0.50 in women and 0.49 in men. There
was direct proportional correlation between this ratio and the analyzed risk
variables. It was a better predictor than cholesterol and the insulin-resistance
index.
REFERENCES
Saderi N, Escobar C, Salgado R. La alteración de los ritmos biológicos causa enfermedades metabólicas y obesidad. Rev Neurol. 2013;57:71-8.
OMS. Temas de salud: Obesidad [homepage en Internet]; 2016 [citado 19 de julio de 2016]. Disponible en: http://www.who.int/topics/obesity/es/
OMS. Obesidad y sobrepeso. Nota descriptiva N° 311 [homepage en Internet]; 2016 [citado 19 de julio de 2016]. Disponible en: http://www.who.int/mediacentre/factsheets/fs311/es/
OMS. 10 datos sobre la obesidad [homepage en Internet]; 2014 [citado 19 de julio de 2016]. Disponible en: http://www.who.int/features/factfiles/obesity/es/
Sánchez JC, Romero CR, Muñoz LV, Alonso R. El órgano adiposo, un arcoiris de regulación metabólica y endocrina. Rev Cubana Endocrinol [serie en Internet]. 2016 Abr [citado 5 de septiembre de 2016];27(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561- 29532016000100010&lng=es&nrm=iso&tlng=es
Rodriguez A, Ezquerro S, Mendez-Gimenez L, Becerril S, Fruhbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. American Journal of Physiology Endocrinology and Metabolism. 2015;309(8):E691-E714.
Carrascosa JM, Rocamora V, Fernández RM, Jiménez R, Moreno JC, Coll N, et al. Obesidad y psoriasis: naturaleza inflamatoria de la obesidad, relación entre psoriasis y obesidad e implicaciones terapéuticas. Actas Dermo-Sifiliográficas. 2014;105(1):31-44.
Bellido D, De la Torre ML, Carreira J, de Luis D, Bellido V, Soto A, et al. Índices antropométricos estimadores de la distribución adiposa abdominal y capacidad discriminante para el síndrome metabólico en población española. Clínica e Investigación en Arteriosclerosis. 2013;25(3):105-9.
Saavedra SS. Obesidad. Fundamentos de las recomendaciones FAC'99 en prevención cardiovascular. I Congreso Virtual de Cardiología, Argentina [homepage en Internet]; 2011 [citado 5 de septiembre de 2016]. Disponible en: http://www.fac.org.ar/cvirtual/cvirtesp/cientesp/epesp/epc0015c/cguzman/cguzma n.htm
Hernández J, Duchi PN. Índice cintura/talla y su utilidad para detectar riesgo cardiovascular y metabólico. Rev Cubana Endocrinol. 2015;26(1):66-76.
Gu R, Duan X, Xin X, Chen J, Wu X, & Inter ASIA Collaborative Group. Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia. 2003;46(9):1190-8.
González R, Buchaca E. Fisiopatología y progresión de las personas con prediabetes. Rev Cubana Endocrinol. 2011;10(1):11-7.
Pérez A, Inclán A, Lora S, Barrios Y. Diet: a basic principle in the treatment of dysglycemia. MEDISAN. 2011;15(4):549-57.
De'Marziani G, Pujol GS, Obregón LM, Morales EM, Gonzalez CD, Paganti LG, et al. Alteraciones glucémicas en los pacientes con enfermedad renal crónica. Nefrología. 2016;36(2):133-40.
American Diabetes Association. Standards of Medical Care in Diabetes-2017. Diabetes Care. 2017;40(sup 1):S1-S135.
Rodríguez MC, Cabrera A, Aguirre JA, Domínguez S, Brito B, Almeida D, et al. El cociente perímetro abdominal/estatura como índice antropométrico de riesgo cardiovascular y de diabetes. Medicina Clínica. 2010;134:9(3):386-91.
Jiménez A, Aguilar CA, Rojas R, Hernández M. Type 2 diabetes and frequency of prevention and control measures. Salud Pública Méx. 2013;55(sup 2):S137-S143.
Díaz O, Valenciaga JL, Domínguez E. Comportamiento epidemiológico de la diabetes mellitus en el municipio de Güines. Año 2002. Rev Cubana Hig Epidemiol [serie en Internet]. 2004 [citado 27 de junio de 2016];42(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561- 30032004000100003&lng=es&nrm=iso&tlng=es
Oficina Nacional de Estadísticas. Panorama Económico y Social. Cuba 2014 [homepage en Internet]; Cuba: Indicadores demográficos, 2015 [citado 27 de junio de 2016]. Disponible en: http://www.one.cu/publicaciones/08informacion/panorama2014/10%20Demografia .pdf
Alayón AN, Alvear C. Prevalencia de desórdenes del metabolismo de los glúcidos y perfil del diabético en Cartagena de Indias (Colombia), 2005. Salud Uninorte. Barranquilla (Col.). 2006;22(1):20-8.
Despres JP, Lamarche B. Effects of Diet and Physical Activity on Adiposity and Body Fat Distribution: Implications for the Prevention of Cardiovascular Disease. Nutrition Research Reviews. 1993;6:137-59.
Łopatyński J, Mardarowicz G, Szcześniak G. A comparative evaluation of waist circumference, waist-to-hip ratio, waist-to-height ratio and body mass index as indicators of impaired glucose tolerance and as risk factors for type-2 diabetes mellitus. Ann Univ Mariae Curie Sklodowska Med. 2003;58(1):413-9.
Remón I, González OC, Arpa Á. El índice cintura-talla como variable de acumulación de grasa para valorar riesgo cardiovascular. Rev Cubana Med Milit. 2013;42(4):444-50.
Esmaillzadeh A, Mirmiran P, Azizi F. Comparative evaluation of anthropometric measures to predict cardiovascular risk factors in Tehranian adult women. Public Health Nutr. 2006;9:61-9.
Esmaillzadeh A, Mirmiran P, Azizi F. Waist-to-hip ratio is a better screening measure for cardiovascular risk factors than other anthropometric indicators in Tehranian adult men. Int J Obes Relat Metab Disord. 2004;28(10):1325-32.
Chin-Hsiao T, Choon-Khim C, Ting-Ting C, Chyi-Huey B, San-Lin Y, Hung-Yi C, et al. Optimal anthropometric factor cutoffs for hyperglycemia, hypertension and dyslipidemia for the Taiwanese population. Atherosclerosis. June 2010;210(2):585-9.
Solera M, López S, Sánchez M, Moya P, Notario B, Arias N, et al. Validez de un modelo con un único factor en el síndrome metabólico en adultos jóvenes: análisis factorial confirmatorio. Rev Esp de Cardiol. 2011;64(5):379-84.
Nakamura K, Nanri H, Hara M. Optimal cutoff values of waist circumference and the discriminatory performance of other anthropometric indices to detect the clustering of cardiovascular risk factors for metabolic syndrome in Japanese men and women. Environ Health Prev Med. 2010;16:52-60.
Aschner P. La importancia de estimar la obesidad abdominal. Acta Med Colomb. 2013;38(3):112-3.
Dong S, Ashwell M, Mutoc T, Tsujia H, Arasea Y, Murased T. Urgency of reassessment of role of obesity indices for metabolic risks. Metabolism. 2010;59(6):834-40.
Browning L, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0,5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247-69.
Ashwell M. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obesity Reviews. 2012;13(3):275-86.
Ko GTC, Chan JCN, Cockram CS, Woo J. Prediction of hypertension, diabetes, dyslipidaemia or albuminuria using simple anthropometric indexes in Hong Kong Chinese. Int J Obes. 1999;23(11):1136-42.
Lin WY, Lee LT, Chen CY, Lo H, Hsia HH, Liu IL, et al. Optimal cut-off values for obesity: using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. International Journal of Obesity & Related Metabolic Disorders. 2002;26(9):7.
Pua YH, Ong PH. Anthropometric indices as screening tools for cardiovascular risk factors in Singaporean women. Asia Pac J Clin Nutr. 2005;14(1):74-99.
Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303-7.
McCarthy HD, Ashwell M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple messagekeep your waist circumference to less than half your height. Int J Obes (Lond). 2006;30:988-92.
Bonet Gorbea M, Varona Pérez P. III Encuesta nacional de factores de riesgo y actividades preventivas de enfermedades no trasmisibles. Cuba 2010-2011. La Habana: Editorial Ciencias Médicas; 2015. p. 330.