2017, Number 4
<< Back Next >>
Rev Mex Ortodon 2017; 5 (4)
Immunoexpression of transforming growth factor-β3 (TGF-β3) and receptor III of β transforming growth factor (TGF β-RIII) in pediatric patients with complete or incomplete non-syndromic cleft palate
López GC, Maldonado MHA, García LS, Rosas RMC, López CF, Pérez GA, Gutiérrez VDH
Language: Spanish
References: 40
Page: 214-220
PDF size: 374.54 Kb.
ABSTRACT
Introduction: Transforming growth factor β3 (TGF-β3), and receptor III of transforming growth factor β (TGFβ-RIII), regulate epithelial mesenchymal interactions. The lack of TGF-β3 and TGFβ-RIII expression causes defects in palatal fusion.
Objective: To observe the immunoexpression of TGF-β3 and TGFβ-RIII in pediatric patients with non-syndromic complete or incomplete cleft palate (CP).
Material and methods: The study design was observational, descriptive, prospective and transversal. Samples were taken from 20 complete and incomplete CP patients from five to 28 months of age. Samples of mucoperiostium were removed from the cleft in the palate during palatoplasty. In order to perform immunohistochemistry, samples were processed with VENTANA BenchMark Ultra equipment, using TGF-β3 and TGFβ-RIII antibody. Immunoexpression was evaluated by means of global cell impression.
Results: TGF-β3 immunoexpression was greater in epithelial cells than in fibroblasts of patients with complete and incomplete CP; however, TGFβ-RIII immunoexpression was greater within the fibroblasts than in epithelial cells of patients with complete cleft palate.
Conclusions: It was concluded that the lack of TGFβ-RIII expression in the epithelium may be related to the lack of fusion of the palatal shelves. It would be of great interest to perform a more in-depth analysis of the expressions of TGF-β3 and TGFβ-RIII within different cell populations.
REFERENCES
Dixon MJ, Ferguson MW. The effects of epidermal growth factor, transforming growth factors alpha and beta and platelet-derived growth factor on murine palatal shelves in organ culture. Arch Oral Biol. 1992; 37 (5): 395-410.
Gehris AL, Greene RM. Regulation of murine embryonic epithelial cell differentiation by transforming growth factors beta. Differentiation. 1992; 49 (3): 167-173.
Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-β3 (but not TGF-β1 or TGF-β2) activity prevents normal mouse embryonic palate fusion. Int J Dev Biol. 1995; 39 (2): 345-355.
Gálvez-Gastélum FJ, Sandoval-Rodríguez AS, Armendáriz-Borunda J. El factor de crecimiento transformante beta como blanco terapéutico. Salud Pública Méx. 2004; 46 (4): 341-350.
Nonaka K. Our challenging to understand non-genetic effect in addition to genetic one on dento-craniofacial morphogenesis in spontaneous cleft lip/palate mouse model from the standing point of pediatric dentistry. Jpn Dent Sci Rev. 2009; 45 (1): 127-130.
Parada CE, Bayona F. Palatogénesis y hendiduras palatinas: implicación de TGFβ3 y BMPs. Acta Biol Colomb. 2004; 9 (2): 13-23.
Thesleff I. The genetic basis of normal and abnormal craniofacial development. Acta Odontol Scand. 1998; 56 (6): 321-325.
Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000; 92 (1): 19-29.
Fitzpatrick DR, Denhez F, Kondaiah P, Akhurst RJ. Differential expression of TGF beta isoforms in murine palatogenesis. Development. 1990; 109 (3): 585-595.
Iwata J, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. J Clin Invest. 2012; 122 (3): 873-885.
López F, Vilchis M, Esparza J, Ponce M, Velasco N, Juárez P et al. Regulation of the TGF-β superfamily by betaglycan. Transforming growth factor-β in cancer therapy. NJ, EUA: Humana Press, Inc., Totowa; 2008.
Border W, Noble N. TGF-β. Sci Am Sci Med. 1995; 2: 68-77.
Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver. Hepatology. 2001; 34 (5): 859-867.
de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004; 15 (1): 1-11.
Nakajima A, Ito Y, Asano M, Maeno M, Iwata K, Mitsui N et al. Functional role of transforming growth factor-beta type III receptor during palatal fusion. Dev Dyn. 2007; 236 (3): 791-801.
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn. 2015; 244 (2): 122-133.
Cui XM, Warburton D, Zhao J, Crowe DL, Shuler CF. Immunohistochemical localization of TGF-beta type II receptor and TGF-beta 3 during palatogenesis in vivo and in vitro. Int J Dev Biol. 1998; 42 (6): 817-820.
Brown CB, Boyer AS, Runyan RB, Barnett JV. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 1999; 283 (5410): 2080-2082.
López-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 1993; 73 (7): 1435-1444.
López-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massagué J. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell. 1991; 67 (4): 785-795.
Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-beta type III receptor. Cell. 1991; 67 (4): 797-805.
Cui XM, Shuler CF. The TGF-β type III receptor is localized to the medial edge epithelium during palatal fusion. Int J Dev Biol. 2000; 44 (4): 397-402.
Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R et al. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol. 2005; 277 (1): 102-113.
Dudas M, Kim J, Li WY, Nagy A, Larsson J, Karlsson S et al. Epithelial and ectomesenchymal role of the type I TGF-β receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol. 2006; 296 (2): 298-314.
Taya Y, O’Kane S, Ferguson MW. Pathogenesis of cleft palate in TGF-beta3 knockout mice. Development. 1999; 126 (17): 3869-3879.
Nawshad A, LaGamba D, Hay ED. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol. 2004; 49 (9): 675-689.
Cui XM, Shiomi N, Chen J, Saito T, Yamamoto T, Ito Y et al. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate. Dev Biol. 2005; 278 (1): 193-202.
Martínez-Alvarez C, Tudela C, Pérez-Miguelsanz J, O’Kane S, Puerta J, Ferguson MW. Medial edge epithelial cell fate during palatal fusion. Dev Biol. 2000; 220 (2): 343-357.
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008; 1782 (4): 197-228.
Cui XM, Chai Y, Chen J, Yamamoto T, Ito Y, Bringas P et al. TGF-beta3-dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusion. Dev Dyn. 2003; 227 (3): 387-394.
Gato A, Martinez ML, Tudela C, Alonso I, Moro JA, Formoso MA et al. TGF-β(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion. Dev Biol. 2002; 250 (2): 393-405.
Cui XM, Shuler CF. The TGF-beta type III receptor is localized to the medial edge epithelium during palatal fusion. Int J Dev Biol. 2000; 44 (4): 397-402.
Goudy S, Law A, Sanchez G, Baldwin HS, Brown C. Tbx1 is necessary for palatal elongation and elevation. Mech Dev. 2010; 127 (5-6): 292-300.
Kernahan y Stark. Aspectos generales. Clasificación de labio y paladar hendido. En: Rozen I. Texto de labio y paladar hendido. Conceptos básicos. México: Compu edición y Cuidado; 2000. Capítulo 1, pp. 17-35.
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347 (6220): 1260419.
Levi B, Brugman S, Wong VW, Grova M, Longaker MT, Wan DC. Palatogenesis: engineering, pathways and pathologies. Organogenesis. 2011; 7 (4): 242-254.
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem. 2015; 6 (3): 121-138.
López-Sánchez R, Berenguer-Fröhner B, González-Meli B, Rodríguez-Urcelay P, Marín-Molina C, de Tomás-Palacios E et al. Colgajo FAMM para reconstrucción de fístulas de paladar en pacientes con fisura palatina congénita: experiencia y resultados. Cir Plást Iberolatinoam. 2014; 40 (3): 261-270.
Jiménez K, González J, Sahagún J. Cierre de fístula palatina recurrente con el uso de plasma rico en factores de crecimiento. Rev Esp Méd Quir. 2011; 16 (2): 119-123.
Jiménez K, González J. Uso de plasma rico en factores de crecimiento para disminuir la recurrencia de fístulas nasopalatinas en pacientes con antecedente de paladar hendido. An Orl Mex. 2011; 56 (2): 63-75.