2017, Number 4
<< Back Next >>
MEDICC Review 2017; 19 (4)
Determinants of virulence and antimicrobial susceptibility in Non-O1, Non-O139 Vibrio cholerae isolates
Fernández-Abreu A, Bravo-Fariñas L, Rivero-Navea G, Cabrera-Cantelar N, Nuñez-Fernández FA, Cruz-Infante Y, Águila-Sánchez A, Hernández-Martínez JL
Language: English
References: 41
Page: 21-25
PDF size: 325.89 Kb.
ABSTRACT
Introduction In the Caribbean region, acute diarrheal diseases caused by the Vibrio genus have increased in recent years, following the 2010 earthquake in Haiti. Based on its capsular lipopolysaccharide, Vibrio cholerae is classified into more than 200 serogroups, divided into O1, O139 and non-O1, non-O139. Non-O1 serogroups produce clinical features ranging from mild diarrhea to severe dehydration. In Cuba, circulation of non-O1, non-O139 V. cholerae has been reported both in outbreaks and sporadic cases.
Objective Describe the antimicrobial susceptibility of V. cholerae to the drugs of interest used in its treatment and verify the presence of enzymatic virulence factors.
Methods A descriptive, cross-sectional study was conducted in January through November 2014, based on 125 non-O1, non-O139 V. cholerae isolates obtained during 2013 and 2014 from patients with acute diarrheal disease (isolates from the National Reference Laboratory for Acute Diarrheal Diseases of the Pedro Kourí Tropical Medicine Institute, Havana). Bacteriological identification was performed according to conventional methods. Antimicrobial susceptibility was determined by the Bauer-Kirby agar diffusion method. The technique described by Robinson in 1986 was used to determine virulence factors, hemolytic activity and enzyme factors (DNase, elastase, gelatinase), and Karagozova’s method for the enzyme lecithinase.
Results Highest percentages of sensitivity were obtained for azithromycin (98.4%), doxycycline (97.6%) and ciprofloxacin (96.8%), and highest resistance values for ampicillin (60%), sulfonamide (46.4%) and trimethoprim–sulfamethoxazole (32%). Six resistance patterns were detected, four found in Cuba for the first time, as well as six patterns of multidrug resistance (4.8%). All isolates had at least two extracellular enzymes as virulence factors. The most frequent were gelatinase (90.4%) and lecithinase (77.6%). The percentage of virulence factors was lower in the group of isolates resistant to ≥2 antimicrobials. An inverse relationship was found between presence of enzymatic virulence factors and resistance in the isolates studied.
Conclusions The results suggest that azithromycin, doxycycline and ciprofloxacin should continue to be used for treatment of V. cholerae-caused infections, and confirmed the presence of four new resistance patterns in isolates circulating in Cuba.
REFERENCES
World Health Organization [Internet]. Geneva: World Health Organization; c2014. Mediacenter. Fact sheets. Cólera; 2012 [cited 2015 Dec 10]. Available from: http://www.who.int/mediacentre/ factsheets/fs107/es/
Zelada Valdés A, Ledón Pérez TY, Fando Calzada RA. El cólera: una enfermedad infecciosa reemergente. El candidato vacunal cv 638, una herramienta para su prevención. Rev CENIC. 2015 May–Aug;46(2):131–43. Spanish.
National Health Statistics and Medical Records Division (CU). Anuario Estadístico de Salud 2016 [Internet]. Havana: Ministry of Public Health (CU); 2017 [cited 2017 May 20]. Available from: http://files.sld.cu/dne/files/2017/05/Anuario _Estad%C3%ADstico_de_Salud_e_2016 _edici%C3%B3n_2017.pdf. Spanish.
Pan American Health Organization. Actualización Epidemiológica: Cólera 23 de nov 2016. Washington D.C.: Pan American Health Organization; World Health Organization; 2016. Spanish.
González Fraga S, Villagra de Trejo A, Pichel M, Figueroa S, Merletti G, Caffer MI, et al. Caracterización de aislamientos de V. cholerae no-O1, no-O139 asociados a cuadros de diarrea. Rev Argent Microbiol. 2009 Jan–Mar;41(1):11–9. Spanish.
Thapa Sherestha U, Adhikari N, Maharjan R, Banjara MR, Rijal KR, Basnyat SR, et al. Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect Dis. 2015 Feb 27;15:104.
Farmer JJ III, Michael J, Brenner FW, Cameron DN, Birkhead KM. Taxonomic outline of the prokaryotes. In: Bergey’s Manual of Systematic Bacteriology. 2nd ed. Release 4.00 [Internet]. 2003 Oct [cited 2014 Nov 11]. Available from: https://www.bergeys.org/outlines/bergeysout line_4_2003.pdf
Bravo Fariñas L, Fernández A, Ramírez MM, Llop A, Martínez G, Hernández RI, et al. Caracterización microbiológica de cepas de V. cholerae no-O1 aisladas en Cuba. Rev Cubana Med Trop [Internet]. 2007 Sep–Dec [cited 2014 Jan 25];59(3):227–33. Available from: http:// scielo.sld.cu/scielo.php?script=sci_arttext&pid =S0375-07602007000300008. Spanish.
Bravo L, Majano A, Fernández A, Ramírez MM, Águila A, Cruz Y. Susceptibilidad antimicrobiana de bacilos gramnegativos anaerobios facultativos oxidasa positiva. Arch Venezolanos Farmacol Terapéutica. 2009;26(1):23–7. Spanish.
Rojas N, Chaves E, García F. Bacteriología Diagnóstica. Costa Rica. Non-O1 and Non-O139 Vibrio cholerae Infections [Internet]. San José de Costa Rica: University of Costa Rica; 2006 [cited 2014 Jan 25]. 150 p. Available from: http://www .infectologiapediatrica.com/attachments/bacte riologia_diagnostica.pdf. Spanish.
Baq PK, Bhowmik P, Hajra TK, Ramamurthy T, Sarkar P, Majumder M, et al. Putative virulence traits and pathogenicity of V.cholerae Non- O1, Non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol. 2008 Sep;74(18):5635–44.
Ghosh A, Ramamurthy T. Antimicrobials & cholera: are we stranded? Indian J Med Res. 2011 Feb;133(2):225–31.
Ceccarelli D, Alam M, Huq A, Colwell RR. Reduced susceptibility to Extended-Spectrum β-Lactams in V. cholerae isolated in Bangladesh. Front Public Health. 2016 Oct 18;4:231.
Yu L, Zhou Y, Wang R, Lou J, Zhang L, Li J, et al. Multiple antibiotic resistance of V. cholerae serogroup O139 in China from 1993 to 2009. PLoS One. 2012:7(6):e38633.
Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Pennsylvania: Clinical and Laboratory Standards Institute; 2017 Jan 1. 224 p.
Bravo L, Cabrera R, Cabrera LE, Ramírez M, Castañeda N, Fernández A, et al. Sensibilidad antimicrobiana en cepas de Vibrio cholerae no- O1 aisladas en Cuba. Rev Esp Quimioterap. 2004;17(2):200–1. Spanish.
Cabrera Rodríguez LE, Bravo Fariñas L, Ramírez Álvarez M, Llop Hernández A, Fernández Abreu A, Morier Díaz L, et al. Susceptibilidad a los antimicrobianos y factores de virulencia en cepas de V. cholerae no-O1 aisladas de pacientes con enfermedad diarreica aguda. Rev Biomed. 2008 Sep–Dec;19(3):138–44. Spanish.
Fernández Abreu A, Bravo Fariñas L, Águila Sánchez A, Cruz Infante Y, Illnait Zaragozí MT, Llop Hernández A, et al. Susceptibilidad antimicrobiana en aislamientos cubanos de Vibrio cholerae O1 procedentes de muestras clínicas. Rev Cubana Med Trop. 2016 Apr;68(1):51–8. Spanish.
Win W Jr, Allen S, Janda W, Koneman E, Procop G, Schreckenberg P, et al. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Path. 1966 Apr;45(4):493 –6.
Clinical and Laboratory Standard Institute (CLSI). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved Guideline–Second Edition. Pennsylvania: Clinical and Laboratory Standard Institute (CLSI); 2010 Aug. 12 p.
Robinson J, Beaman J, Wagener L, Burke V. Comparison of direct plating with the use of enrichment culture of isolating of Aeromonas spp from faeces. J Med Microbiol. 1986 Dec;22(4):315–7.
Karagozova AV, Salnikova OI. [The expression of the pathogenic properties of the V. cholerae O139 serogroup in vitro]. Zh Mikrobiol Epidemiol Immunobiol. 2000 May–Jun;(3):7–10. Russian.
Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype El Tor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control. 2016 Jun 4;5:23
Kumar Das S, Klontz EH, Azmi IJ, Ud-Din AIMS, Chisti MJ, Afrad MH, et al. Characteristics of Multidrug Resistant Shigella and Vibrio cholerae O1 Infections in Patients Treated at an Urban and a Rural Hospital in Bangladesh ISRN Microbiology. Int Scholarly Res Notices [Internet]. 2013 [cited 2013 Nov 10]; 2013(Article ID 213915). 8 p. Available from: https://www.hindawi.com/jour nals/isrn/2013/213915/
Mahmud ZH, Islam S, Zaman RU, Akter M, Talukder KA, Bardhan PK, et al. Phenotypic and genotypic characteristics of Vibrio cholerae O1 isolated from the Sierra Leone cholera outbreak in 2012. Trans R Soc Trop Med Hyg. 2014 Nov;108(11):715–20.
Calvo-Barbado DM, Delgado-Martínez I. Formulario Nacional de Medicamentos. [Internet]. Havana: Editorial Ciencias Médicas; 2014 [cited 2014 Jan 25]. Available from: http:// www.bvs.sld.cu/libros_texto/formulario_nac _medicamentos_4taed/indice_p.htm. Spanish.
Mandal J, Dinoop KP, Parija SC. Increasing antimicrobial resistance of V. cholerae OI biotype EI Tor strains isolated in a tertiary-care centre in India. J Health Popul Nutr. 2012 Mar;30(1):12–6.
Murhekar M, Dutta S, Ropa B, Dagina R, Posanai E, Rosewell A. V. cholerae antimicrobial drug resistance, Papua New Guinea, 2009–2011. Western Pac Surveill Response J. 2013 Sep 2;4(3):60–2.
Ministry of Public Health (CU). Programa Nacional para el Control del Cólera. Havana: Ministry of Public Health (CU); 2010. Spanish.
Bakhshi B, Eftekhari N, Pourshafi e MR. Genetic elements associated with antimicrobial resistance among intestinal bacteria. Jundishapur J Microbiol. 2014 May;7(5):e9924.
Rashed SM, Mannan SB, Johura FT, Islam MT, Sadique A, Watanabe H, et al. Genetic characteristics of drug-resistant V. cholerae O1 causing endemic cholera in Dhaka, 2006 –2011. J Med Microbiol. 2012 Dec;61(Pt 12):1736–45.
Dutta D, Chowdhury G, Pazhaniv G, Guin S, Dutta S, Ghosh S, et al. V. cholerae Non-O1, Non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis [Internet]. 2013 [cited 2014 Jan 25]. Available from: https://www .ncbi.nlm.nih.gov/pmc/articles/PMC3647666/
Shrestha SD, Malla S, Adhikari BR, Shakya G, Basnyat SR, Sharma S. Antibiotic susceptibility patterns of V. cholerae isolates. J Nepal Med Assoc. 2010 Jul–Sep;49(179):232–6.
Talkington D, Bopp C, Tarr C, Parsons MB, Dahourou G, Freeman M, et al. Characterization of Toxigenic V. cholerae from Haiti, 2010–2011. Emerg Infect Dis. 2011 Nov;17(11):2122–9.
Guanche Garcell H, Pisonero Socias JJ, Enseñat Sánchez R, Fiterre Lancis I, Mir Narbona I, García Arzola B, et al. Impacto de un programa de control de la calidad de la prescripción de antibióticos en un hospital de La Habana. Rev Panam Salud Pública. 2011 Dec;30(6):598–602. Spanish.
Bueno Y. Caracterización fenotípica de cepas de V. cholerae no-O1 aisladas de pacientes con enfermedad diarreica aguda [thesis]. [Havana]: Dr Pedro Kourí Institute of Tropical Medicine (IPK); 2011. Spanish.
Bina XR, Provenzano D, Nguyen N, Bina JE. Vibrio cholerae RND family effl ux systems are required for antimicrobial resistance, optimal virulence fact or production, and colonization of the infant mouse small intestine. Infect Immun. 2008 Aug;76(8):3595–605.
Spengler G, Kincses A, Gajdács M, Amaral L. New Roads Leading to Old Destinations: Effl ux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules. 2017 Mar 15;22(3):468. pii: E468.
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013 Apr;26(2):185–230.
Díaz Rigau L, Cabrera Rodríguez LE, Fernández Núñez T, Arias Vegas M, Scull Scull G. Serogrupos y susceptibilidad antimicrobiana en cepas de Shigella. Rev Cubana Pediatr. 2009 Jan–Mar;81(1):1–9. Spanish.