2017, Number 6
<< Back Next >>
Rev Mex Neuroci 2017; 18 (6)
Basal Ganglia and Behavior
Ospina-García N, Pérez-Lohman C, Vargas-Jaramillo JD, Cervantes-Arriaga A, Rodríguez-Violante M
Language: Spanish
References: 42
Page: 74-86
PDF size: 480.65 Kb.
ABSTRACT
Historically, the function of the basal ganglia has been a subject
of debate and study. Initially it was proposed that these structures
participated exclusively on the motor behavior; however, the current
body of knowledge and science progress, allows to understand that
these structures, and their connections, are determinant not only
on motor behavior, but also in cognition and emotions. The present
review describes the neuroanatomic and functional basis of the basal
ganglia, emphasizing both the traditional schemes and the most
recent models including sensorimotor, associative and limbic circuits,
along with the relevance of reward systems.
REFERENCES
Marsden CD. The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology. 1982;32(5):514-539.
DeLong MR. Primate models in movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7)281-285.
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357-381.
Saint-Cyr JA, Taylor AE, Nicholson K. Behavior and the basal ganglia. Adv Neurol. 1995;65:1-28.
Medina L, Reiner A. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain Behav Evol. 1995;46:235-258.
Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex. 2006;16(7):916-928.
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366-375.
Catani M, Dell’acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behavior. Neurosci Biobehav Rev. 2013;37(8):1724-1737.
Rajmohan V, Mohandas E. Indian J Psychiatry. 2007;49(2):132-139.
Schiffmann SN, Fisone G, Moresco R, et al. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83(5):277-292.
Mathur BN, Lovinger DM. Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front Pharmacol. 2012;3(66):1-11.
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217.
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;2(12):1-20.
Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(S3):548-559.
Benarroch EE. Intrinsic circuits of the striatum. Neurology. 2016;86(16):1531-1542.
Obeso JA, Lanciego JL. Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat. 2011;5(39):1-6.
Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760-772.
Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24(3):165-205.
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. 2002;43(2):111-117.
Reiner A, Hart NM, Lei W, Deng Y. Corticostriatal projection neurons - dichotomous types and dichotomous functions. Front Neuroanat. 2010;4(142):1-15.
Smith Y, Galvan A, Ellender TJ, et al. The thalamostriatal system in normal and diseased states. Front Syst Neurosci. 2014;8(5):1-18.
Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266-271.
Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009-1023.
DeLong M, Wichmann T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord. 2009;15(S3):237-240.
Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci. 2015;16(12):719-732.
Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system. Implications for Parkinson disease. Neurology. 2015;85(20):1795-1805.
Redgrave P, Coizet V. Brainstem interactions with the basal ganglia. Parkinsonism Relat Disord. 2007;13(S3):301-305.
Smith Y, Surmeier DJ, Redgrave P, Kimura M. Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci. 2011;31(45):16102-16106.
Redgrave P, Vautrelle N, Reynolds JN. Functional properties of the basal ganglia’s re-entrant loop architecture: selection and reinforcement. Neuroscience. 2011;15(198):138-151.
Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord. 2003;18(4):357-363.
Loonen AJ, Ivanova SA. Circuits regulating pleasure and happiness: The evolution of the amygdalarhippocampal- habenular connectivity in vertebrates. Front Neurosci. 2016;10(539):1-17.
Loonen AJ, Ivanova SA. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 2013;18(1)15-20.
Heimer L. A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry. 2003;160(10):1726-1739.
Groenewegen HJ. The basal ganglia and motor control. Neural Plast. 2003;10(1-2):107-120.
Benarroch EE. Habenula: recently recognized functions and potential clinical relevance. Neurology. 2015;85(11):992-1000.
Cassell MD, Freedman LJ, Shi C. The intrinsic organization of the central extended amygdala. Ann NY Acad Sci. 1999;877:217-241.
Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev. 2006;30(2):126-147.
Groenewegen HJ, Trimble M. The ventral striatum as an interface between the limbic and motor systems. CNS Spectr. 2007;12(12):887-892.
Dalley JW, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav. 2008;90(2):250- 260.
Stahl SM, Loonen AJ. The mechanism of drug-induced akathisia. CNS Spectr. 2011;16(1):7-10.
Loonen AJ, Ivanova SA. Circuits regulating pleasure and happiness in major depression. Med Hypotheses. 2016;87:14-21.
Ortega LA, Solano JL, Torres C, Papini MR. Reward loss and addiction: Opportunities for crosspollination. Pharmacol Biochem Behav. 2017;154:39-52.